
ИНФОРМАЦИОННО
УПРАВЛЯЮЩИЕ СИСТЕМЫ № 4, 20142

ОБРАБОТКА ИНФОРМАЦИИ И УПРАВЛЕНИЕ

UDC 004.438

A REVIEW AND NEW SYMMETRIC CONFERENCE MATRICES
N. A. Balonina, Dr. Sc., Tech.,  Professor,  korbendfs@mail.ru
Jennifer Seberryb, PhD, Foundation Professor, jennifer_seberry@uow.edu.au
aSaint-Petersburg State University of Aerospace Instrumentation, 67, B. Morskaia St., 190000, 
Saint-Petersburg, Russian Federation
bCentre for Computer Security Research, EIS, University  of Wollongong, NSW, 2522, Australia

Purpose: The paper deals with symmetric conference matrices which were first highlighted by Vitold  Belevitch, who 
showed that such matrices mapped to lossless telephone connections. The goal of this paper is developing a theory of 
conference matrices using the preliminary research results. Methods: Extreme (by determinant) solutions were obtained by 
minimization of the maximum of matrix elements absolute values, followed by their subsequent classification. Results: We 
give the known properties of symmetric conference matrices, known orders and illustrations for some elementary and some 
interesting cases. We restrict our attention in this note to symmetric conference matrices. We give two symmetric conference 
matrices of order 46 which are inequivalent to those given by Rudi Mathon and show they lead to two new families of sym-
metric conference matrices of order 5 × 92t+1 + 1, t ≥ 0 is an integer. Practical relevance:  Web addresses are given for other 
illustrations and other matrices with similar properties. Algorithms of building symmetric conference matrices have been 
used for developing research software.
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Introduction

Symmetric conference matrices are a particular-
ly important class of {0, ±1} matrices. Usually writ-
ten as C, they are n  n matrices with elements 0, +1 
or 1 which satisfy

CTC = CCT = (n1)In,

where “T”  denotes the matrix transpose and In 
is the identity matrix of order n. We say that a con-
ference matrix is an orthogonal matrix (after the 
column-normalization).

In this paper we use  for 1 which corresponds 
to the usual Hadamard or weighing matrix nota-
tion [120].

A circulant matrix Cn = (cij) of order n satisfies 
cij = c1, ji+1 (mod n).

Properties of Symmetric Conference 
Matrices

We note the following properties of a conference 
matrix:

— the order of a conference matrix must be  2 
(mod 4);

— n  1, where n is the order of a conference ma-
trix, must be the sum of two squares;

— if there is a conference matrix of order n then 
there is a symmetric conference matrix of order n 
with zero diagonal. The two forms are equivalent 
as one can be transformed into the other by (i) in-
terchanging rows (columns) or (ii) multiplying rows 
(columns) by 1;

— a conference matrix is said to be normalized 
if it has first row and column all plus ones;

— Cn
T = (n 1)Cn

1.

Known Conference Matrix Orders

Conference matrices are known [see Appendix] 
for the following orders:

Key Method Explanation References

c1 pr + 1 pr  1(mod 4) 

is a prime power

[11, 6] 

c2 q2(q + 2) + 1 q  3(mod 4) 

is a prime power

q + 2 

is a prime power

[10]

c3 46 [10]

c4 5  92t+1 + 1 t  0 is an integer [15]

c5 (n  1)s + 1 s  2 is an integer, 

n — the order of 

a conference matrix

[17, 14]

c6 (h  1)2s + 1 s  1 is an integer, 

h — the order of 

a skew-Hadamard 

matrix

[17, 14]

c7 4 circulant 

matrices with 

two borders

Example below

c8 Certain relative 

difference sets 

with two borders

[1]
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We now describe the examples of the C46 which 
differ from that of Mathon. We will observe and use 
three types of cells:

1) type 0: 0-circulant (zero shift,  all rows are 
equal to each-other);

2) type 1: circulant (circulant shift every new 
row right);

3) type 2: back-circulant (circulant shift every 
new row left).

We will say that a matrix has a rich structure, if 
it consists of several different types of cells. Such 
notation allows us to describe special matrix struc-
tures for different C46.

Rich Structures and Families 
of Mathon  Structure

The Mathon C46 [10] has as its core the usual 
block-circulant matrix, every block has 9 little  
33-cells. We write it as

W = circ(A, B, C, CT, BT),

where all cells of type 0 are situated inside of C.

The Basic Mathon C46 has cells only 
of types 0 and 1

Cells (Fig. 1) have
1) type 1:  inside of A = circ(a, b, bT); 
2) type 1:  inside of B = backcirc(c, d, cT); 
3) type 0:

  
inside of C = crosscirc(e).

The C = crosscirc(e) consists of m = 3 col-
umns (m — size of e), every column has m = 3 
rows — circulant shifted cell of type 0. We will 
call it a cross-shifted matrix (or cross-matrix, for 
short).

The  new Balonin — Seberry C46  is based 
on cells of all types 0, 1 and 2 (that is there 
are richer cells)

The different structures that appear have cells 
(Fig. 2) with

1) type 1:  inside of A = circ(a, b, bT); 
2) type 2:  inside of B = circ(c, d, d*); 
3) type 0:

  
inside of C = crosscirc(e).

  Fig. 1. Matrices A, B, C of original cell-structure

  Fig. 2. Matrices A, B, C of new cell-structure
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Now let d = [d1 d2 d3] then cell d* = [d3 d1 d2] 
is used instead of dT with back-circulant cells.

This the most compact description of Mathon’s 
matrix based on the term: “rich structure” 
(Fig. 3).

The old structure has 2 types of cells and 
3 types of matrices A, B, C. The new structure 
has 3 types of cells and 2 types of matrices. 
There is an important  structural invariant: the 
common quantity of types (cells and matrices)
 is equal to 5.

To show the inequivalence of these C46 we 
would start by using permutations of size 5 to try 
to transform the blocks from the second matrix 
into the form of the first. This is carried out for 
both the row blocks and column blocks. However, 
when we look at the resulting structure we see it 
is not symmetric. To force it to be symmetric we 
have to reverse the operations we have just car-
ried out. Hence we can not permute one structure 
into the other. About the inequivalence of rich and 
poor structures, we can say the following: there 
are “inequivalence by structure” (ornamental in-
equivalence) and “inequivalence by permutations”. 
Among Hadamard matrices (for example) there are 
well known Sylvester and Walsh constructions, 
they have the first type of difference: ornamental 
inequivalence.

Easy to use Conference Matrix Forms

When used in real world mechanical appli-
cations it may be useful to have them in one of 
a few main forms: a conference matrix with circu-
lant core, this is c1a below, or a conference matrix 
constructed from two circulant matrices, this is 
c1b below, the latter matrices will not be normal-
ized. The type described as c7, for which we give 

an example, but not an infinite class may also 
be useful.

Key Method Explanation References

c1a p + 1 p  1 (mod 4) 

is a prime

[11, 6]

c1b p + 1 p  1 (mod 4) 

is a prime

[5]

c7 4 circulant 

matrices with 

two borders

The conference matrix (actually an OD(13; 4, 9)) 
found by D. Gregory of Queens  University, Kings-
ton, Canada1 given here is of the type c7.

0 1 1 1 1 1 1 1 1 1 1 1 1 1
1 0 1 1 1 1 1 1
1 1 0 1 1 1 1 1
1 1 0 1 1 1 1 1
1 1 0 1 1 1 1 1

1 1 0 1 1 1 1 1
1 1 1 0 1 1 1 1
1 1 1 1 0 1 1 1

1 1 1 1 1 1 0 1
1 1 1 1 1 1 0 1
1 1 1 1 1 1 0 1

1 1 1 1 1 0 1 1
1 1 1 1 1 1 0 1
1 1 1 1 1 1 1 0

é
ê - - - - - -ê

- - - - - -
- - - - - -
- - - - - -

- - - - - -
- - - - - -
- - - - - -

- - - - - -
- - - - - -

- - - - - -

- - - - - -
- - - - - -
- - - - - -ë

.

ù
ú
ú

ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê úê úû

1 D. Gregory, private communication, 1973.

  Fig. 3. Matrices C46 of original (poor) and new (rich) cell-structures
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Families of Conference Matrices

Seberry and Whiteman [15] showed how to 
extend the symmetric conference matrix C46 of 
Mathon to an infinite familiy of symmetric confer-
ence matrices of order 5 92t+1 + 1, t  0 is an inte-
ger. That paper carefully calculated all the interac-
tions between the basic blocks of the 99 original 
blocks.

Since this calculation is arithmetical and not 
instructive we do not copy it here. However exactly 
the same techniques can be used to find new, in-
equivalent families, c4bswa and c4bswb from our 
two new C46. This technique is also similar to that 
in Seberry [13].

Conference matrices with cores 
and from two block matrices

We particularly identify conferences matrices, 
of order n, which are normalized and can be written 
in one of the two forms: conference matrices with 
core or conference matrices made from two blocks.

These two forms look like

0


æ ö÷ç ÷ç ÷ç ÷ç ÷÷çè ø

e

e A
   and   . 

æ ö÷ç ÷ç ÷ç ÷ç ÷- ÷çè ø

A B

B A

It is not necessary for A or B in either case to be 
circulant.  However, in the form written  they must 
commute. A variation of the second matrix can be 
used if A and B are amicable.

Then we say we have a conference matrix with 
circulant core or a conference matrix constructed 
from two circulant matrices the latter matrices will 
not be normalized.

Example. 

0 1 1 1 1 1
1 0 1 1
1 1 0 1
1 1 0 1
1 1 0 1
1 1 1 0

é ù
ê ú
ê ú- -ê ú
ê ú- -ê ú
ê ú- -ê ú
ê ú- -ê ú
ê ú- -ê úë û

  and      

0 1 1 1 1
1 0 1 1 1
1 1 0 1 1

1 1 0
1 1 0
1 1 0

.

é ù-
ê ú
ê ú-ê ú
ê ú-ê ú
ê ú- - -ê ú
ê ú- - -ê ú
ê ú- - -ê úë û

In this example the two matrices are in fact 
equivalent [13, 15].

A Classification to Differentiate between 
Symmetric Conference Matrices

We classify these by whether they:
1) have a circulant core;
2) are constructed from two circulant blocks;

3) have a core but it is not circulant;
4) are constructed from two blocks but they are 

not circulant;
5) Mathon’s type;
6) from skew Hadamard matrices;
7) are constructed from four blocks with two 

borders;
8) any other pattern we see;
9) ad hoc.

Useful URLs and Webpages Related 
to This Study

Some useful url’s include:
1) http://mathscinet.ru/catalogue/OD/
2) http://mathscinet.ru/catalogue/artifact22/
3) http://mathscinet.ru/catalogue/conference/

blocks/
4) http://mathscinet.ru/catalogue/belevitch3646/
5) http://www.indiana.edu/~maxdet/
6) http://www.math.ntua.gr/~ckoukouv/
7) http://www.uow.edu.au/~jennie/Hadamard.

html/
8) http://tomas.rokicki.com/newrec.html
We also note a very useful package for Latin to 

Cyrillic conversion: package[utf 8]inputenc
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Conclusion and Future Work

Comment.  In order to consider other matrices 
with these kinds of cells we consider the condition 

( )2 2 1n p q= + +  as this allows many more little 
cells.

Version n = 9 9 + 1 is very well known and 
class c1 [11, 19]; versions n = 5 9 9 9 + 1 and 
in general n = 5 92t+1 is class c4 [15]: c4bswa and 
c4bswb, given above, are also this type. Version 
n = 9 9 9 9 + 1 is very well known and class c1 
[11]. To continue to look at the versions mpr + 1 we 
would next have to consider version n = 13 9 9 + 1 
and so on.

Henceforth we consider the Mathon matrix 
as oscillations motivated by the Fourier basis. 
Then the new Balonin-Seberry C46 reflects phases 
“shift right”–“0-shift”–“shift-left”–“shift-left”–
“0-shift”.
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Appendix 
  Known Conference Matrix Orders Less than 1000

Order Exist? Type Order Exist? Type Order Exist? Type Order Exist? Type

6  c1, c1a 254 NE 506 ? 758  c1, c1a

10  c1a, c6 258  c1, c1a 510  c1, c1a 762  c1, c1a

14  c1, c1a 262 ? 514 NE 766 ?

18  c1, c1a 266 ? 518 NE 770  c1, c1a 

22 NE 270  c1, c1a 522  c1, c1a 774  c1, c1a

26  c1 274 NE 526 NE 778 NE 

30  c1, c1a 278  c1, c1a 530  c1, c6 782 NE

34 NE 282  c1, c1a 534 ? 786 ? 

38  c1, c1a 286 NE 538 NE 790 NE

42  c1, c1a 290  c1 542  c1, c1a 794 ?

46  c2, c3, c4 294  c1, c1a 546 ? 798  c1, c1a 

50  c1, c6 298 NE 550 ? 802 ? 

54  c1, c1a 302 NE 554 NE 806 NE

58 NE 306 ? 558  c1, c1a 810  c1, c1a 

62  c1, c1a 310 NE 562 NE 814 NE 

66 ? 314  c1, c1a 566 ? 818 N E
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Order Exist? Type Order Exist? Type Order Exist? Type Order Exist? Type

70 NE 318  c1, c1a 570  c1, c1a 822  c1, c1a

74  c1, c1a 322 NE 574 NE 826 NE

78 NE 326 ? 578  c1, c1a 830  c1, c1a 

82  c1, c6 330 NE 582 NE 834 ? 

86 ? 334 ? 586 ? 838 NE

90  c1, c1a 338  c1, c1a 590 NE 842  c1

94 NE 346 NE 594  c1, c1a 846 ? 

98  c1, c1a 350  c1, c1a 598 NE 850 NE

102  c1, c1a 354  c1, c1a 602  c1, c1a 854  c1, c1a 

106 NE 358 NE 606 ? 858  c1, c1a

110  c1, c1a 362  c1, c6 610 NE 862 NE

114  c1, c1a 366 ? 614  c1, c1a 866 ? 

118 ? 370 ? 618  c1, c1a 870 NE

122  c1, c6 374  c1, c1a 622 NE 874 ?

126  c1 378 ? 626  c1 878  c1, c1a 

130 NE 382 NE 630 ? 882  c1, c1a

134 NE 386 NE 634 NE 886 NE 

138  c1, c1a 390  c1, c1a 638 ? 890 NE 

142 NE 394 NE 642  c1, c1a 894 NE 

146 ? 398  c1, c1a 646 NE 898 NE

150  c1, c1a 402  c1, c1a 650 NE 902 ?

154 ? 406 ? 654  c1, c1a 906 ?

158  c1, c1a 410  c1, c1a 658 ? 910 ? 

162 NE 414 NE 662  c1, c1a 914 NE 

166 NE 418 NE 666 NE 918 NE 

170  c1 422  c1, c1a 670 NE 922 NE

174  c1, c1a 426 ? 674  c1, c1a 926 ?

178 NE 430 NE 682 NE 930  c1, c1a 

182  c1, c1a 434  c1, c1a 686 ? 934 NE

186 ? 438 NE 690 ? 938  c1, c1a

190 NE 442  c2 694 NE 942  c1, c1a

194  c1, c1a 446 ? 698 ? 946 NE

198  c1, c1a 450  c1, c1a 702  c1, c1a 950 ?

202 NE 454 NE 706 NE 954  c1, c1a 

206 ? 458  c1, c1a 710  c1, c1a 958 NE

210 NE 462  c1, c1a 714 NE 962  c1, c6

214 NE 466 NE 718 NE 966 ? 

218  NE 470 NE 722 NE 970 NE 

222 ? 474 NE 726 ? 974 NE

226 ? 478 ? 730  c1, c6 978  c1, c1a

230  c1, c1a 482 ? 734  c1, c1a 982 ?

234  c1, c1a 486 ? 738 NE 986 ? 

238 NE 490 NE 742 NE 990 NE 

242  c1, c1a 494 ? 746 ? 994 NE

246 ? 498 NE 750 NE 998  c1, c1a

250 NE 502 NE 754 NE 1002 ?




