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Introduction: Suboptimal random coding exponent EX(R; y) for a wide class of finite-state channel models using a
mismatched decoding function w was obtained and presented in the first part of this work. We used y function represented
as a product of a posteriori probabilities of non-overlapped input subblocks of length 2B+1 relative to the overlapped output
subblocks of length 2W+1. It has been shown that the computation of function EX(R; @) is reduced to the calculation of the
largest eigenvalue of a square non-negative matrix of an order depending on the B and W values. Purpose: To illustrate the
approach developed in the first part of this study with its application to various channel modelled as a probabilistic finite-
state machine. Results: We consider channels with state transitions not depending on the input symbol (channels with
freely evolving states), and channels with deterministic state transitions, in particular, intersymbol interference channels.
We present and discuss numerical results of calculating this random coding exponent in a full range of code rates for some
of channel models for which similar results were not obtained before. Practical computations were carried out for relatively
small values of B and W. Nevertheless, even for small values of these parameters a good correspondence with some known
results for optimal decoding was shown.
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Introduction

This paper is the second part of the work, the
first part of which is published earlier [1]. In the
previous part, a random coding bound is presented
for a wide class of channels with memory, including
those for which this bound could not be managed
to obtain. The basic idea is to apply a suboptimal
decoding rule that is different from the maximum
likelihood (ML) decoding. In this part, we give nu-
merical examples of the application of this bounda-
ry and their discussion.

For the connectedness of the exposition, we give
the definitions and the main result of the previous
part of the paper. Let py‘x(y|x) be transition proba-
bility of the discrete-time channel; for the continu-
ous-output channel it is instead a probability densi-
ty function (p. d. f.); x € X%, where X be a discrete
input channel alphabet and g,=| X | < o0; y € YV,
where Y is the channel output alphabet, | Y| = ¢ and
N is the length of a block code.

To indicate a segment of an arbitrary vector z
we use the notation zZ = (zmax(La) - (max(la)+l)
.., 2Ly Cwhere I is length of the vector z.

For subvectors, or segments of vectors, x and y the
notation x and y is used. The difference between them
is noted due to the use of ordinary and sans serif font.

The decoding rule is given as
X =argmax, y(y; x),

where y(y; x) is a real-valued positive decoding
function, and the maximization is performed over
all code words.

For simplicity we assume that code ensemble is
generated by using of independent uniformly dis-
tributed (i. u. d.) code symbols. This assumption
leads to loss of optimality but simplifies further
consideration. Using the classic approach [2] one
can derive the suboptimal exponent of the random
coding bound in asymptotic form

E; (R; y) = max (max ES (v, p, A)— pRj,
1>p>0\ >0

where

Eg(y, ps M) =(1+p)logq, —

P
1 —
im 108 > by (¥ [ 2w (y; x) M’(Zw(y; x')K] .
y X <

-1
N—

Hereafter log(*) denotes the binary logarithm, the
asterisk in the superscript hereafter means that the
code symbols are chosen as i. u. d. random variables.
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Similarly one can get the random coding expo-
nent for ML decoding for fixed code length N

E'(N, R)= max (ES(N, 0)— pR), )
1>p>0

where

Ey(N, p)=(1+p)logq, -
1 1+p

) 1
—log 2| 2y ([0 @)
Yy X

with the bound for maximum information rate
Fppax (N) = 0BG (N p)/ 09| .

where R} ,.(N) < C, where C is channel capacity.
Evidently, the inequality E;(R; y) < E;(R) is valid.
The asymptotic random coding exponent for ML
decoding and the code ensemble with i. u. d. symbols
is EX(R) = lim y_,.. E}(N, R).

By analogy with the channel capacity C and
maximal information rate R}, (V) let us define the
lower bound on maximum achievable code rate for
mismatched decoding C*(y) as

0 mang (v, p, )

C*(y)=—220 ‘ <C ®)

op ‘
p=0

and value

Ry(v)=max; .o Eg(y, 1, 1),

giving a bound on the cut-off rate R; evidently, the
inequalities Ry(y) < Ry< Ry are valid.

In this study we assume that the channel model
is given as a probabilistic finite-state machine [2],
i. e. conditional probabilities characterizing this
model are given as follows

N
Pys Y %, )= T Pyjus ™ [, §0Dy,
n=1

N
Py (8]%) = Py (5[] Py (s [ 2, 57D,

n=1

where s=(s@, s, .., s®, ) is the sequence
of the channel states, s™eS, S is a set of the
channel states, and |S| < o; p,j,s(y™}x®, D) and
Pyes(@™@|x™, s D) are conditional probabilities of
the channel output and channel state transition,
respectively, p,() is an unconditional (stationary)
distribution on the set of the channel states. Also,
we assume that the input channel symbol x™ and

the current channel state s*D are independent. It
has been shown in [1] that the probabilities py|X(y|x)
can be represented in form of matrix product as

N
py|x(y|x)=ps£H P(y™ lx‘”))J 1", )

n=1

where
P(y| %) =[Py s (U] %, 8) Py (8| %, 9)] ©)

is a matrix of size|S| x [S|; p;=[ps(1), ..., ps(/S)]is the
vector of the unconditional state probabilities at
n=0,and 1=(1, ..., 1) is vector of 1’s of dimensions
1 x|S|.

Next, we specify type of decoding function. The
appropriate choice of decoding function, which al-
lows obtaining a result in the final form, was one of
the main problems of this study. In this paper, we
proposed a decoding function y(y; x) with partial
overlap, which depends on two integer parameters
W and B, W > B > 0. For i. u. d. segments nggig
the decoding function y(y; x) can be written as

NE)- k(n)+W | _k(n)+B
. — n n
w(y; x)= | | Py (yk(n),w |Xk(n)—B ),
n=0

6)

where py‘x(-|-) is the conditional probability for

segments of different, in general, lengths 2W + 1

and 2B + 1 respectively, and k(n) =n(2B +1) + 1.
Denote square matrices of order |S| as

2B+1 . .
P (v[0= ] P® |x?),
=1

VEY2B+1, X EX23+1, (7)

where P(y|x) is matrix defined in (5). Let D;(y; 1)
be a scalar quantity, and Dy(y; Ap) and D(y; A,p) be
square matrices of order |S| defined as follows

Diy; = Y, by’
XEXZB+1
D2(y; xp) = Z Py|x (y%tgii x)py|x (y ’ x)—}\P,
XEX2B+1

Let us also define the square matrices K;(, p)
of order |S| as
D(y; A, p), W=2B+1;
> D(y; b, p), W<2B+1. (8)

2B+1
Y2(W-B)+1

K;i(h p)=

The correspondence of the indices i, j and the
vectoryin the expression (8)is given as i <> y%(W_B )
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and j Hy%%vle. Finally, we define a square block

matrix of order |S|q2(W=B)

K@, p) =[K;; (%, p)]=

Kiutp) o K 2avn (s p)

S . 9)

KqZ(W—B) 1(7% p) Kq2(W—B) aow-8) (A5 P)

q

The main result obtained in the first part of this
paper [1] is formulated as the following assertion.

Theorem. Let channel be specified by conditional pro-
babilities (4), where the matrices (5) are irreducible, and
let the decoding function y be given by equation (6)
with integer parameters W and B, where W > B > 0.
Then the random coding exponent E;(R; ) for the
code ensemble with i. u. d. code symbols is

E; (R v)=max(Eg(v, p)-pR),  (10)
0<p<1

where

% %
Ey (v, p)=maxEy(y, p, 1) =
A>0

=(1+p)logq, —(2B+1)7! 1og(r{u(r)1r(K(x, p))),

and r(K(A, p)) is the maximum eigenvalue (spectral
radius) of matrix K(%, p), given in equation (9).

The computational complexity of obtaining the
values of the function E(R; y) depends on the di-
mensions of py,(y}x) equal to g2V *1xq,2B+1 [see
(7)], and on the order of the square matrix K(A, p)
equal to |S|g2(W=B),

Determination of analytical dependence of as-
ymptotic random coding exponent E(R; y) on the
values of W and B is equivalent to the description
of the dependency of spectral radius of the ma-
trix K(A, p) on these parameters. This dependency
cannot be expressed in exact and closed analytical
form. From general considerations, it follows that
the greater the values of W and B are, then better
approximation of the ML exponent can be achieved
in principle. Moreover, for various values of code
rate R different combinations of the values W and
B may be preferable. Unfortunately, the increase of
the parameters W and B causes the great growth of
computational complexity. The common approach
consists of testing some combinations and selecting
one that gives acceptable results for a given coding
rate at a reasonable computational complexity. In
next section, we present some results of calculat-
ing the random coding exponent for several chan-
nel models with memory and comparison with some
known results.

Numerical Examples and Discussion

To illustrate application of the suggested ap-
proach let us consider some examples. The first ex-
ample is classical Gilbert model and its generaliza-
tion — Gilbert — Elliott model. The second example
presents a simple model for a fading channel with
nonbinary Frequency Shift Keying (FSK). These
models give examples of symmetric channels with
binary and nonbinary inputs and freely evolving
states. The third example is for the channel model
that is defined as a deterministic finite-state ma-
chine, and the last example is for channel with lin-
ear intersymbol interference and g-level quantized
output (deterministic finite-state machine model as
well).

Example 1. Gilbert channel and Gilbert — Elliott
channel. Consider the well-known Gilbert channel
model with two states 1 (“good”) and 2 (“bad”). In
this case ¢, = ¢ = 2 and |S| = 2. Let the channel state
transition probabilities be given as ps‘s(1|1) =0.75
and ps|s(2|2) =0.97, and let the symbol crossover
probabilities be equal to 0 and 1/2 for states 1 and
2 respectively (here we follow example in [3]). For
this model, the complexity of calculation of the ex-
ponent of the random coding bound is not too large
and the function E;(R; y) can be computed for com-
paratively large values of the parameters W and B.
Results of the computations are shown in Fig. 4 for
W=5and B=0, 1, ..., 5. The values of C*(y), shown
in Fig. 1 and further, are computed as

mang (v, 5, 1)

C* (y) ~ 220 , 5<<1, a1

)

giving an approximation for formula (3). The error
exponent E}(R) for ML decoding computed for this
example using the Egarmin algorithm [4] is also
shown in Fig. 4. The channel capacity can be found
using the original Gilbert approach [3] and for this
example the capacity is C = 0.758 bit/channel use. It
can be seen from the Fig. 1 that the curves E;(R; y)
are approaching the curve E(R) from below with the
increase of the parameter B. For B = 5 the function
EJ(R; y)and value of C*(y) give good approximations
for the ML random coding exponent E;(R) and the
channel capacity C respectively .

It is interesting to compare the function E}(R; y)
with the random coding exponent E; (N, R) for the
ML decoding for some (small) values of the code
length N. The function E:(N, R) can be computed
by formulas (1) and (2). In equation (2) the chan-
nel conditional probability py‘x(y|x) is computed ac-
cording to the equation (4). Evidently, to compute
a single value of py|x(y|x) we have to perform ap-
proximately 2N|S|2 operations (multiplications and
additions). To compute the value Eg(N, p) we need
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Gilbert channel, p(G|G) = 0.97, p(B|B) = 0.75, p(e|G) = 0, p(e|B) = 0.5

0.258

0.2

E/(R.v). [W, B] = [5 0], C*(y) = 0.696602

E(R.v), [W, B] = [5 1], C*(y) = 0.729864

E/(Ry). [W, B] = [5 2], C*(y) = 0.740846

E(R.v). [W, B] = [5 3], C*(y) = 0.745788

0.15

E(R.v), [W, B] = [5 4], C*(y) = 0.748429

E/(R.y), [W, B] = [5 5], C*(y) = 0.750188

E(R), C = 0.758106

0.1

0.05

0 0.1 0.2 0.3 0.4 0.5

R, bit/channel use

B Fig. 1. Functions E;(R; v) and E(R), Gilbert channel

“ 07 08 0.9

to calculate the values of py‘x(y|x) for all y e YN and
for all x € XV, Thus the total number of operations
in general case is about 2N|S|2¢VgN. For this exam-
ple |S|=2 and g = q,= 2. Therefore, the total num-
ber of operations is about N227N+3 and it can be too
large even for small N. For example, for N =16 it
is equal to 239 ~ 5.5-10!1, But this channel can be
considered as a channel with binary additive mod-
ulo 2 noise. Therefore, the channel output vector
is y=x®e, where e is a binary error vector, and
Pyjx (y|x) = pe(y ®x), where p,() is a distribution
on the set of error vectors. Then for the sum over x
in the right hand side of (2) we can write

1 1 1
Y Py (V[0 =3 p (y® )P =3 py ()P
X X X

and hence

1

% 1+ 1o
Eg(N, p)=p—Tplog S e | (12)
X

Evidently, pe(x) = py(0x), where the probabil-
ities py‘x(-|-) are given by equation (4). In this case,
to compute all values pq(x) it is required to perform
about 2N|S[2qY = N2N+3 operations. For example,
for N =16 the number of operations is equal to an
acceptable value 223 ~ 8.4-106. Fig. 2 presents re-

sults of comparison of the function E;(R; y) with
the random coding exponent E (N, R) for ML decod-
ing for some fixed values of the code length N.

The asymptotic random coding exponent E;(R)
for ML decoding computed by the Egarmin algo-
rithm [4] is also shown in Fig. 2. It can be seen from
the Fig. 2 that functions E;(N, R) approach the as-
ymptotic function E}(R) from above with increas-
ing of N, and the function E;(R; y) gives quite good
approximation of the asymptotic function E;(R)
from below.

Let us consider the next example — Gilbert —
Elliot model [5]. Here again ¢ = ¢, = 2 and |S| = 2. Let
the channel state transition probabilities be given
as pys(1[1) = 0.99 and py,(2[2) = 0.8, and let the sym-
bol crossover probabilities be equal to 0.02 and 1/2
for states 1 (“good”) and 2 (“bad) respectively. For
this model the ML random coding exponent E;(R) is
unknown, but the channel capacity can be computed
as it is shown in [6, 7]. The plots of function E;(R; y)
are presented in Fig. 3.

It can be seen that the curves are being shifted
upwards with the increase of the parameter B. For
this case, we do not have a curve for the ML random
coding exponent for comparison, but we can com-
pute the capacity C for this channel using statisti-
cal version [7] of the algorithm presented in [6]. For
this example the true capacity C~0.775 bit/channel
use. For W =4, B = 4 the value of C*(y) = 0.765 bit/
channel use, that is very close to the true capacity.
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Gilbert channel, p(G|G) = 0.97, p(B|B) = 0.75, p(e|G) = 0, p(e|B) = 0.5

' —e—E,(N,R), N = 8, Ry(N) = 0.353255, R__ (N) = 0.747679
—«—E,(N,R), N = 12, Ry(N) = 0.324717, R"__ (N) = 0.751144
—+—E,(N,R), N = 16, Ry(N) = 0.309266, R __(N) = 0.752877
—+—E,(N,R), N = 20, Ry(N) = 0.299838, R __(N) = 0.753916
—8—E,R, v), [W, B] = [5,5], N > o, Ry(y) = 0.24986, C*(y) = 0.75019
s=esniE(R), N - o, Ry = 0.261971, C = 0.758106

0 0.1 0.2 0.3 0.4 0.5
R, bit/channel use

e S
0.7 0.8 0.9

B Fig. 2. Functions E;(N, R), E;(R; v) and E(R), Gilbert channel

Gilbert — Elliott channel, p(G|G) = 0.99, p(B|B) = 0.8, p(e|G) = 0.02, p(e|G) = 0.5

0.25

s

[ ——

—G—E:(R,w), [W, B] = [4 0], C*(y) = 0.742801

——E(Ry). [W, B] = [4 1], C*(y) = 0.756050

0.2

——E Rwy). W, B] = [4 2], C*(y) = 0.761093
——E/Ryy), W, B] = [4 3], C*(y) = 0.763534

_E'_'E:(R,w), [W, B] = [4 4], C*(y) = 0.764935

o
=
a

/

O c=0.775384

0.1
0.05 \%
0 S
0 0.1 0.2 03 0.4 05 0.6 07 08 0.9

R, bit/channel use

B Fig. 3. Functions E}(R; y), Gilbert — Elliott channel

The plots of the functions E;(N, R) for ML deco-
ding for some fixed N values calculated using equa-
tions (12), (4) and (1) are shown in Fig. 4 for com-
parison with the suboptimal asymptotic exponent
E}(R; y). It can be seen that the curves E; (N, R) are
shifting downward, and the achievable code rate

R} .x(N) increases with increasing N. As N — oo,
we have R} ,.(N) — C (note that in this example
C* = (), and the suboptimal random coding expo-
nent E’(R; y) can serve as a lower bound for the
random coding exponent for the Gilbert — Elliott
channel.
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Gilbert — Elliott channel, p(G|G) = 0.99, p(B|B) = 0.8, p(e|G) = 0.02, p(e|B) = 0.5

0.4x

N
NN

%

;\\\ —e—E/(N,R), N = 8, Ry(N) = 0.398779, R'__ (N) = 0.764900

—=—E(N,R), N = 12, Ry(N) = 0.361830, R__ (N) = 0.766695
—+—E,(N,R), N = 16, Ry(N) = 0.337530, R___ (N) = 0.767595
—+—E(N,R), N = 20, Ry(N) = 0.321142, R__ (N) = 0.768135
—8—E,R, y), [W, B = [4,4], N -, Ry(y) = 0.23658, C*(y) = 0.76494

011 ﬁ\g\

0 0.1 0.2 0.3 0.4 0.

R, bit/channel use

0.7 0.8 0.9

B Fig. 4. Functions E;(N, R) and E(R; y), Gilbert — Elliot channel

p(GlG) p(GIM)

B Fig.5. State transitions diagram

Example 2. Simple model for fading channel with
nonbinary FSK. Let us define the channel states as
an additive white Gaussian noise channels with dif-
ferent noise power. Consider transmission of g,-ary
orthogonal FSK signals over this channel and op-
timal noncoherent reception. For this model ¢, =g,
and the symbol crossover probabilities are given as

1-— S(Sn_l) ), y(n) — x(n);

(n) | (1) ((n-1)y _
py™ |2, STy =4 gD
Gl RN O N O
qg-1
where £(s) is symbol error probability for noncoherent
reception of g-ary FSK signal for channel state s.
This probability can be found as (see, e. g., [8])

1 g-1) (1) !
8(8)—%( ; J o exp[ l+1v(8)j,

where y(s) is signal-to-noise ratio (SNR) in channel
state s. Let for instance, ¢, =¢=4 and S ={1, 2,
3}, i. e. the channel can be in one of three states:
1 (“good”, or G), 2 (“medium”, or M) and 3 (“bad”,
or B). Assume that the channel state transitions

are given by the diagram shown in Fig. 5 with the
following channel state transition probabilities:
pas() =p(GIG) =0.99,  py,(1I2) = p(GIM) = 0.2,
P4s(312) = p(BIM) = 0.6, p(3]3) = p(BB) = 0.9. Let
the state SNR be as follows y(1) =15 dB, y(2) =0 dB
and y(8) = —5 dB. The plots of the function E}(R; )
are shown in Fig. 6.

Example 3. Channel with deterministic state
transitions. Let X =Y ={0, 1}, S={1, 2}, and the
probabilities py,(s@x®, s D) and p,.(y™)x®,
s D) are given in Table 1, where ¢ is symbol crosso-
ver probability, 0<e < 1/2.

B Table 1. Probabilities py,,(s™fx(™, s(»~1)
andpy\xs(y(n)|x(n), S(n_l))

ps‘xs(s(n)lx(ﬂ) , s(n’l)) py‘xs(y(ﬂ”x(n)’ s(’l’l))

(x(n)’ S(nfl)) (x(n), s(n’l))

S(n) y(n)
0,1)|(0,2) | (1,1) |(1,2) 0,1)](0,2)| (1,1) | (1,2)
1 1 1 0 0 0 [1/2|1—-¢| ¢ 1/2
2 0 0 1 1 1 ]1/2 e |1—-¢|1/2
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Three state FSK4 channel, p(G|G) = 0.99, p(B|B) = 0.9, p(GIM) = 0.2, p(B|[M) = 0.6, y=[15 0 -5]dB

0.05 -

0.04

0.03 -

0.02

—e—E(R.y). [W,B] = [2 0], C*(y) = 1.066815

——E (R, ), [W,B] = [2 1], C*(y) = 1.220886

—+—E (R, ), [W,B] = [2 2], C*(y) = 1.290990

0.01 -

R, bit/channel use

B Fig. 6. Functions E;(R; ), three state FSK4 channel

1.5

For this model in state 1, the symbol x = 0 flips
with probability 1/2, and the symbol x = 1 flips with
small probability €. In state 2, on the contrary, the
symbol x = 0 flips with small probability ¢, and the
symbol x =1 — with probability 1/2. In addition,
the channel state becomes 1 after symbol 0 comesin,
and is equal to 2 after the coming in the symbol 1.
The functions E;(R; y) for this model are plotted in
Fig. 7 for € = 0.01. In Fig. 7 we present examples for
some good combinations of the parameters W and B
for W=0, 1, ..., 6, and the best pairs for this exam-
pleare [W, B]=[W, W —1], W > 1.

To compare the plots of functions E(R; y) with
result for ML decoding let us consider the function
Ry — R. This function coincides with the random
coding exponent E(R) in the interval 0 < R< R,,,
where R, is the critical rate [2], and the plot of the
linear function Ry — R can be considered in ex-
ample as a known part of the curve for whole ran-
dom coding exponent E(R). It can be shown (see
Appendix) that R for ML decoding for this exam-
ple can be found as Ry = 2logq, — logr(H), where
r(H) is maximum eigenvalue of the matrix H,
and

1 a(e) ae) 1
He a(g) 1 b(e) a(e) , (13)
ae) be) 1 a(e)

1 a() ae) 1

where a(e) = \/(1 -€)/2+ \/8 /2 and b(e) =2,/e(1-¢).
It follows from the Fig. 7, that the random coding
exponent E;(R; y) for W=6, B=15 is very close to
the straight line Ry — R, so the function E}(R; )
can be considered as a quite good approximation for
the ML random coding exponent E(R).

Example 4. Intersymbol interference channel
with g-level quantized output. A simple interference
channel model is defined by the vector of coeffi-
cients g =[go, &1 ---» &z]- The channel input x = (xD,
..., xM) is a binary sequence and unquantized chan-
nel output is

(n=10)

L
y =Y a-n" +e®, (14)
=0

where x0=0,1, and £ are independent Gaussian
random variables with zero mean and variance c2.
The following modulation mapping is assumed in
equation (14): 0 > + 1, 1 — —1. The SNR is defined
as v = [g|2/(262). The number of channel states is
equal to 2L. The continuous channel output y§? is
subjected by a g-level quantization. In this example
we assume that the quantization algorithm is
one-dimensional quantization maximizing the
Bhattacharya distance between conditional dis-
tributions of the quantized values [9]. We consider
the simplest case of the model known as the dicode
channel with parameters L=1, g=[+1, —1] and

6 (1)
|S|= 2. For this case yJ” =(-1)* —(-1)*  +&™,
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B Fig.7. Functions E;(R; v), channel with deterministic state transitions, ¢ = 0.01

The dicode channel with two-level quantization of
the continuous channel output is equivalent to the
channel with deterministic state transitions in
Example 3. Plots of the functions E (R; ) computed
according to the equation (10) for y =4 dB, ¢ =8 and

some combinations of the parameters B and W, are
shown in Fig. 8. The values of C*(y), computed by the
formula (11), and values of R for the ML decoding
computed using known techniques [10—12] (see also
Appendix), are also presented in Fig. 8.

Dicode channel, g = [1-1], SNR=4dB, q=8
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As with the previous example we present the plot
for the function Rj — R in Fig. 8, where Ry is com-
puted as it is shown in Appendix. Also in the Fig. 8
we indicate the value of maximum information rate
C* for the dicode channel with soft output computed
in [13]. We see that maximum of functions E(R; )
for [W, B]=1[3, 2] and [W, B]=[3, 1] are close to the
straight line Ry — R and to the value of C*.

Random coding exponent E (N, R) for the ML de-
coding computed by formulas (1) and (2) for several
small values of the code length N is depicted in Fig. 9.
The function E(R; y) and asymptotic (N — ) lin-
ear function Ry — R for the ML decoding are al-
so presented in Fig. 9 for comparison. Clearly, as
N — o, the function E (N, R) for 0 < R< R,, tends
to the line Ry — R. As it follows from the Fig. 9
the suboptimal random coding exponent E:(R; )
is very close to the random coding exponent E (N,
R) for the presented examples of the code length N
and is not far from the asymptotic linear function
R — R. The functions E (N, R) for larger values of
N are not presented due to high complexity of their
computation.

Plots of Ry and R((y) as a function of the SNR
are presented in Fig. 10. The values of R are cal-
culated by a known method [14-16]. For this case
(dicode channel) the values of R can be found in
closed form as

o =—log §+l e‘2y+\/1+16e_y—2«3_2Y+e_4y .
8 8

The values of C*(y) and values of maximum in-
formation rate for the channel with nonquantized
output found in [13] by a simulation-based algo-
rithm are shown in Fig. 11. Note that in [9] a dif-
ferent definition of SNR is used, namely y = ||g|/c?;
therefore the plot showing the data of [9] is moved
to the left by 3 dB. We see in Fig. 10 and Fig. 11 that
the difference is about 10 %, and it seems that the
increasing number of quantization levels ¢ leads to
a decrease in this difference.

Conclusion

In this work, consisted of two parts, we present
the derivation of the exponent of the random cod-
ing bound E;(R; y) for suboptimal, or mismatched,
decoding. We proposed a decoding function in the
form of a product of the a posteriori probabilities
of the non-overlapped input subblocks of length
2B + 1 relative to the overlapped output subblocks
of length 2W + 1 [see (6)]. The computation of the
values of the function E(R; y) is reduced to the cal-
culation of the largest eigenvalue of a square non-
negative matrix K(), p) of order |S|q2("W=B), where | S|

Dicode channel, g = [1 -1], SNR=4dB, q=8
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B Fig.9. Functions E; (N, R) and E;(R; v), dicode channel y =4 dB
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B Fig. 12. General view of the functions E: (R) and E;(R; v)

is the number of channel states and ¢ is the cardi-
nality of the channel output alphabet.

The computational complexity of obtaining the
values of the function E}(R; y) depends on the di-
mension of the values py‘x(y|x), equal to g2+ x ¢, 2B+
[see (7)], and on the order of the matrix K(A, p), equal
to |S|g2W=B). Therefore, in the examples presented
in this part of the work, the practical computations
were carried out for relatively small values of B, W
and g. Nevertheless even for small values of these pa-
rameters, good results were obtained. The values of
Ry(y) and C*(y) found for the suggested suboptimal
decoding functions are close to the corresponding
values found before for the case of ML decoding for
the intersymbol interference channels with soft out-
put. A qualltatlve picture of the relationship between
function E (R), presented in the introduction in the
first part [1] of this work, and function E}(R; )
is shown in Fig. 12. The values of Ry and C* for a
discrete-time channel with intersymbol interference
can be obtained by known techniques [14—-16] and [9].
As we see from the Fig. 12 the curve for the function

,(R V) (solid line) goes higher than known bound

(R) for high code rates.

We see the same in example in Fig. 8, where
for quantized channel output with ¢=8 and
W=38, B=1, we have Ry(y)=0.710 bit/channel
use, C*(y) =0.871 bit/channel use; for continuous
channel output R;(y)=0.824 bit/channel use and
C*(y) = 0.920 bit/channel use as follows from Fig. 10
and Fig. 11 for SNR =4 dB. The curve E/(R; vy) is
shifted upwards and to the right with increasing
values of the parameters ¢, W and B. This conclu-
sion follows from the fact that the decoding func-
tion v becomes the ML decoding function with in-
creasing parameters W and B. Thus, the function
E}(R; y) can be a good approximation for the true

but unknown function E(R). The problem of the ex-
tension of the proposed approach to other channel
models and the problem of finding an efficient algo-
rithm for numerical computation for large values of
B, W and g remain open for research.

Appendix

In this appendix we present a derivation of the
expression for R for the channel with determin-
istic state transitions. This derivation is a minor
modification of the known results [12, 14-16]. The

general expression for R follows from the equation
or p=1and N> wis

2
. 1
Ry =210gqx—Al]lglooﬁzy:(;/pﬂx(ylx)] . (A1

Let us consider the sum over y in (A1)

2
Z(Z,/pﬂx(ylx)j =
y X
=ZZ[Zpr|x(y|x)py|x(y|x')} (A2)
x x|y

For finite-state channel model we have the chan-
nel conditional probability

Py (7 1%) =D Pyiss (7| X, 8) Py (5]%),

where

N
py|XS (y | % S) = H py\xs(y(n) | x(n)a s(nil))

n=1

N\
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B Table Al. Values of h(s,, Sy; Sp»>Sh)

(54> 8a)

(Sp> Sp)

1,1 1,2)

2,1 2,1)

1) | 2 Poles @105y 10,1 |3 [Py 010Dy U111 | 2 2y1s @111 51 10,1 | 3Py 011D Py (01,
Yy Yy Yy Yy

(1.2) | 2o Pules @102y 010:2) | 31y es 01008y s 011,2) | 34y 011D 2y (002) | 3Py 0 11.D1y s (0]1,2)
Yy Yy Yy Yy

@.1) |2\ Putes @020y s 10,1 | 3Py @102 Pycs WL | 3 Pyes 011,22y @10,1) | 2 y1es 0112115 (9 ]1,1)
Yy Yy Yy Yy

@.2) | 2 Pies @102, 010:2) | [Py 010,22, U 11.2) | 3 [Py U112y s 0]0:2) | X[ 1y1s (W[ 1Dy (0 ]1,2)
Yy Yy Yy Yy

and

N
Pyx(s[x)= sG] Pijxs (s | ™, D)y,

n=1

Hence,

N
Py 310 = Y DT pyjes @™ |7,

s© n=15®

sy Pyfes ( s [, (D), (A3)

For channel with deterministic state transitions
the pair (x®, s~D) uniquely defines the next chan-
nel state s, therefore the sum over s in (A3) con-
tains only one term. Then it can be written

Py %)= py(s)p, P [,
(0)

S

5O @2, 5D) p (D] 10D VD)

where s®=f(x®, so D) n=1, 2, ..., N, and f(,)

is a function defining deterministic transition
(n)
X

s D 5 (M Hence, for the expression (A2) we have

22| 2Py 5 [0 pyn (v [x) |
x x' \y

py|xs (y | x(n)’ S(n_l))X
) 1)y’ (A9)

N
< Bax, 22112

x x' n=1 Y Xpy‘xs(y|x

Let us introduce for two pairs of states (s,, s;)
and (sp, sp) the values

h(Sy> S5 Sps Sp) =

Z\/py|xs(y|x’ Sa)py|xs(y|x,’ Sb)’
y
=4if s, =f(x, s,) and s, =f(x', ;)3

(A5)

0, otherwise,

and build matrix H of size |S|2 x |[S|2 with the entries
h(sy» Sz3 Sp»> Sp), where the pairs (s, s;) 7 (Sp, Sp)
represent first and second indices of the matrix
entry respectively. Then the inequality (A4) can be
written as

ZZ(ZJpﬂX(yIx)pyx(ylx')Js
x X'\ y

<max(HV1T)<1HV1T,

where 1=(1, ..., 1) is vector of the dimension |S|2.
Further, we have

lim l

2
. 1 N T
/ X = lim —1H"1",
Noo N y(% py|X(Y| )J Noo N

and using the corollary from the Perron —
Frobenius theorem [2, 15] we get finally from (A1)
Ry =2log q,— log r(H), where r(H) is maximum
eigenvalue of the matrix H.

For the channel model given in the Examples 3
and 4 the values of h(sy, s;; Sp» Sp) defined in (Ab)
are listed in Table Al.

Expression (13) is obtained using the data given
in Table A1l.
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BBegeHue: CyGONTUMANBHASA OKCIIOHEHTA CIydaiiHoro Koguposanus E, (R; ) IIs MIMPOKOro KIacca MOfeseil KaHAIA ¢ KOHEUHBIM
YHCJIOM COCTOSHUH, HUCIIOIb3YIOIasd HECOIIACOBAHHYIO JeKOAUPYIOMIYIO (PYHKITUIO ¥, TOJTyUeHa U OIINCaHa B II€PBOI YaCTU 9TOH paboTHI.
M1 ucrorb30BaIu GYHKITUIO Y, IPEACTABICHHYIO B BU/[€ IPOU3BELEHU allOCTePUOPHBIX BEPOATHOCTEH HEIePEKPHIBAIOIINXCA BXOLHBIX
1o0JI0KOB AJIUHEI 2B + 1 0OTHOCUTEIBHO IEePEKPHIBAIOIUXCA BEIXOTHBIX T0A0I0K0B quuHbl 2W + 1. ITokasaHo, YTO BEIUUCIEHNE 3HAUE-
HUT QYHKIUNA E:( R; ) CBOWTCA K BHIYUCJIEHUIO HANOOIBIIIEr0 COOCTBEHHOTO 3HAUSHUA KBA/[PATHO HEOTPUIATEIbHON MATPHUIIBI, TOPA-
IOK KOTOPO# 3aBUCUT OT ITapaMeTpoB KaHajia u oT Besuuud W u B. Iesb: IpOMJLIIOCTPUPOBATH PA3BUTHIN B IIEPBOM YACTU UCCIEIOBAHUS
MOJXOJ K BBIUMCJIEHUIO SKCIOHEHTHI CIYYANHOr0 KOAUPOBAHUSA B IPUJIOKEHUN €r0 K Pa3JIMYHBIM KaHaJaM, MOZIEIN KOTOPBIX MPeACTaB-
JIAI0T cO00¥ BEPOSATHOCTHBIN KOHEUHBIN aBToMaT. Pe3yasTaTsl: pacCMOTPEHBI KaHAJBI, B KOTOPHIX IEPEXOALI B MHOYKECTBE COCTOAHUI He
3aBUCAT OT BXOJHOTO CMBOJIA, ¥ KAHAJBI C [JeTePMUHNPOBAHHBIMU [I€PEX0JaMU, B YACTHOCTY KaHAJbl C MEKCUMBOJIbHOM nHTEpdEepeH-
nueit. [ToryueHbl YMCIeHHbBIE PE3yIbTAThl BBIUUCIEHNUA SKCIIOHEHTHI CIYUYalHOTO KOJUPOBAHUSA B IIOJTHOM MHTEPBAJIe CKOPOCTe! Koaa JJIs
pAfa Mojesiell KaHAJOB, AJIs KOTOPBIX IMONOOHBIE PEe3YJIbTATHl HE OBLIN paHee MOoJyueHbl. [IpakTHYecKue BHIUNCIEHNA BBIITOJTHEHBI IS
OTHOCHUTEJHbHO MaJIbIX 3HaueHuil B u W. Tem He MeHee Jaske IIPU MaJIbIX 3HAUEHMIX 9TUX [IapaMeTPOB IIOJYUYeHO X0POoIllee COOTBETCTBHUE C
M3BECTHBIMU PE3yJIbTATAMU JAJIA ONTUMAILHOTO IeKOLUPOBAHUS.

KaroueBsle ciioBa — rpaHUIa CIYyUYaHOTO KOAMPOBAHUA, KAHAJ C KOHEUHBIM YKCJIOM COCTOSAHU, HECOTJIACOBAaHHOE IEKOJUPOBaHNE,
Teopema Ileppora — @pobennyca, KaHaJ C MEKCUMBOJbHON nHTEPhEPeHI[1eld.
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