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Introduction: Hadamard matrices and weighing matrices share the same family. The latter can fill up voids in the matrix 
space by setting some elements to zero, but this feature has not been properly studied yet. Purpose: To study how the orders 
of orthogonal matrices used in information processing can affect their structure. Results: For Ryser's conjecture about orders 
critical for cyclic Hadamard matrices, an extension has been suggested, covering Hadamard matrices and weighing matrices 
which consist of two cyclic blocks. We give examples of Hadamard matrices extended to the newly revealed critical order 
equal to 32, with symmetrical blocks or, on higher orders, with unsymmetrical blocks. We also present two-circulant weighing 
matrices which replace Hadamard matrices and alternate with them. There is an exceptional case related to the order 24 
on which two-circulant Hadamard matrices or weighing matrices do not exist, forcing you to search for a solution among 
four-block constructions. A special set of Hadamard matrices of 20- and 52-fold orders is pointed out, as their blocks are 
asymmetric. A new assumption about the critical order 64 is discussed.
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Introduction

The practical interest to orthogonal (quasi-or-
thogonal) matrices is attributable to their features 
which make them highly popular in digital pro-
cessing and data conversion systems. Orthogonal 
matrices, including Fourier matrices, Hadamard 
matrices, and their most close even-order interpre-
tations which are Belevitch matrices and weighing 
matrices, are used in noise-proof coding, spectral 
expansion, image processing, code division of com-
munication channels, security masking, etc. 

The orthogonality of these matrices enables their 
congruent transformation. The possible orthogonal 
bases, including symmetrical, circulant, two-cir-
culant and other matrix constructions, consider-
ably expand the ways of optimization for certain 
data conversion problems [1, 2]. In coding theory, 
Hadamard matrix columns are used to build codes 
with large code distances [3, 4]. The special way to 
number the columns of such matrices in digital sig-
nal processing, image compression and masking is 
interpreted as a two-level representation of Walsh 
function.

The features of such matrices assume special im-
portance when these conversions are implemented 
in specialized processors at hardware or firmware 
level. Since the form of the matrices, their orders 
and values of their elements significantly affect the 
choice of the corresponding filters, cost of hard-
ware and speed of conversion, it is especially im-

portant to properly choose orthogonal matrices out 
of their vast variety when developing a processor.

Some modern practical applications of orthog-
onal matrices in genetics, biomechanics, medical 
technology, crystallography, video data conversion, 
etc. [5–7] require the fundamentals of the current 
digital methods to be reconsidered. From this point 
of view, integer values of matrix elements are not as 
important as the extremal properties of the matri-
ces and their existence for all possible orders.

The theory of Hadamard matrices Hn with or-
thogonal columns of elements 1 and –1 was devel-
oped from simple manual calculation methods sup-
plementing the initial sequence of Silvester matri-
ces towards more sophisticated ones with the use of 
nested matrices by Scarpis method or finite fields 
used by Paley [8–10].

As time elapsed, the researchers’ interest moved 
from unstructured or semi-structured matrices to 
those with a clearly pronounced structure [11, 12].

Ryser was the first who noticed that the exist-
ence of orthogonal circulant matrices had a limita-
tion. He formulated a conjecture that there were no 
circulant Hadamard matrices of orders n > 4. Turin 
proved in his work [2] that the conjecture was true 
for matrices of 8-fold orders. The trials to prove 
this statement for a more general case are still a 
subject of profound theoretical research in the area 
of high-order matrices, though far from any practi-
cal application. More practically essential were the 
suggestions to go beyond the accepted limitation at 
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the cost of some minor concessions. For example, 
Barker introduced so called Barker codes which are 
a source for circulant matrices of orders not high-
er than 13. When the order is higher than 4, they 
are not orthogonal but close to that in a strict sense 
pointed out by Barker himself: he noted that their 
autocorrelation function has a spike at the begin-
ning but then deviates from zero by no more than 1, 
oscillating with the values 1 and –1.

Thus, the subject of circulant matrices became 
exhausted and the interest gradually moved to the 
area of two-circulant structures which had been 
poorly studied until recently. Note that a circulant 
structure is symmetric about the secondary diag-
onal, therefore Barker’s conjecture actually de-
scribes a limitation for symmetric matrices.

Two-circulant Hadamard matrices are built on 
the base of two monocirculant matrices A and B of 
twice smaller order. A and B can be either circulant 
or backcirculant. Note that when applied to two-cir-
culant Hadamard matrices, an extended interpreta-
tion of Ryser’s conjecture becomes possible [13–15].

The goal of this work is to describe the struc-
tures of two-circulant Hadamard matrices found by 
the algorithm of search for local determinant max-
imum [16], different from all the above-listed clas-
sical methods, and to study in more details the pe-
culiarities of the extended Ryser’s conjecture about 
Hadamard matrices with two-circulant structure.

Alteration of Hadamard Matrices and 
Weighing Matrices

For the sake of convenience, we will consider 
two-circulant matrices built on a circulant A and 
backcirculant B matrices. Ryser’s limitation is also 
valid for matrices of orders smaller than the criti-
cal order 4. A circulant Hadamard matrix of second 
order H2 does not exist [2].

A two-circulant structure considerably ex-
pands the opportunities for combining. A circu-
lant Ryser’s matrix of order 4 can be treated as a 
two-circulant matrix built of monocirculant blocks 
A H2 and B J, where J is a block of ones.

Fig. 1 shows an additional structure obtained 
by doubling a circulant diagonal Ryser’s matrix 
Н4 by Silvester’s rule. The shown two-circulant 
Hadamard matrices are symmetric and doubly sym-
metric by blocks, but so far they just slightly move 
Ryser’s bound from order 4 to 8.

Paired elements 1 and –1 of Hadamard matrices 
are traditionally depicted on matrix portraits as 
white and black cells respectively.

The next non-trivial generalization of Ryser’s 
rule is that an order-12 two-circulant matrix, though 
still doubly symmetric, is “forced” to have zeros on 
both the diagonals of blocks A and B. Such matri-

ces were first introduced by professor J. Seberry 
from Wollongong Science Centre in Australia. She 
dubbed them “weighing matrices” and denoted as 
W [1]. Later it became common to formally denote 
such matrices by specifying not only the order but 
also the number of non-zero elements in the rows. In 
our case, it is W(n, n–2). Elements with value 0 are 
usually depicted on matrix portraits in gray.

From a weighing matrix W(n, n–2) you can go 
to a Hadamard matrix of a twice higher order H2n 
whose blocks will coincide with those of the weigh-
ing matrix, having the same signs and values of 
the diagonal elements, which is a generalization 
of Silvester’s order duplication algorithm. Fig. 2  
shows both these matrices. The first of them, 
weighing matrix W12, was found by a determinant 
optimization program [12, 16].

Hadamard matrices are strictly optimal by de-
terminant. Hence, an order-12 weighing matrix 
which differs from them and has a simple two-cir-
culant structure exists in the secondary maximum 
which is the local maximum of the determinant. 
This means that any sufficiently small change in 
the matrix elements not making the absolute value 
of an element higher than 1 decreases the determi-
nant. Therefore, the determinant optimization al-
gorithm can be used to find and analize weighing 
matrices in the case when two-circulant Hadamard 
matrices do not exist and the absolute maximum 
of the determinant belongs to more complex struc-
tures.

A weighing matrix W12 replaces a two-circulant 
Hadamard matrix which does not exist for this order. 
Weighing matrices alternate with Hadamard ma-
trices in two-circulant form. On order 16, we again 

 Fig. 1. Portraits of a circulant H4 and two-circulant 
H8 matrices

 Fig. 2. Portraits of matrices W12 and H24



ИНФОРМАЦИОННО
УПРАВЛЯЮЩИЕ СИСТЕМЫ № 3, 20184

ТЕОРЕТИЧЕСКАЯ И ПРИКЛАДНАЯ МАТЕМАТИКА

meet a doubly symmetric structure (Fig. 3) which 
moves Ryser’s bound still farther from order 4.  
This result argues against Ryser’s conjecture.

We can presume that this rule is general for all 
two-circulant matrices of orders 12, 20, 28, 26, etc. On 
these orders, Hadamard matrices replace weighing 
matrices which have two zero diagonals. Hadamard 
matrices of orders n 2k have structures belonging 
to the general sequence of Silvester’s orders; howev-
er, as we will see later, they do not keep a double-axis 
or ordinary symmetry. In particular, unsymmetric 
two-circulant Hadamard matrices produce codes of 
Mark Golay who used them to continue his search for 
Barker’s monocycles, not orthogonal but close to that. 
On the other hand, Golay’s codes do not support sym-
metry, so the structure we found for order 16 belongs 
to a different family, not yet described.

Symmetric order-16 Hadamard and Golay matri-
ces precede the doubly symmetric weighing matrix 
W20 shown in Fig. 4 along with a Hadamard matrix 
of a doubled order, according to our presumptions. 

Matrix H40 demonstrates a twister of Seberry 
(nearly symmetric Hadamard matrices): the ele-
ments of its second subblock form a circulating 
structure. You can obtain it by unfolding the blocks 
A and B of a weighing matrix during the transition 
to a Hadamard matrix with circulating elements. 
The twister is a model of standing waves in a square 
pool with four oscillating areas described by the ma-
trices of nested blocks. Hence, Hadamard matrices 
are a mathematical interpretation of resonances in 
a closed cavity (standing waves). Pioneering works 
in this area belong, among others, to professor  
J. Seberry. According to Golay’s studies [2], on or-

der 20 a main maximum of the determinant exists, 
producing an unsymmetric matrix H20 (Fig. 5).

Thus, unsymmetric Golay’s sequences for a side 
branch of orthogonal codes starting on order 20 
complement symmetric sequences of weighing ma-
trices. This fact has never been pointed out in sci-
entific literature. Three Golay’s side branches are 
known; the next one starts on order 52. So, order 
20 is an order on which symmetry becomes the cost 
of an attainable absolute maximum. If you focus on 
symmetric structures, it makes more sense to use 
open weighing matrices.

Note that the period on which you meet a two-cir-
culant Hadamard matrix grows as the problem size 
increases. This feature is also shared by weighing 
matrices. For example, on order 24 we failed to find a 
weighing two-circulant matrix, which happened for 
the first time. Instead of it, we found a more complex 
structure which consisted of not two but four blocks 
and inherited a pair of blocks from W12. Accordingly, 
it produces a matrix H24 without the need to double 
the order, which is demonstrated in Fig. 6.

The advantage of complicating is that a four-
block weighing matrix, during the transition to a 

 Fig. 3. Portraits of two matrices H16 with symmetric 
blocks

 Fig. 4. Portraits of matrices W20 and H40

 Fig. 5. Unsymmetric matrix H20

 Fig. 6. Portraits of matrices W24 and H24

 Fig. 7. Portraits of matrices W28 and H56
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Hadamard matrix, does not require that the order 
is doubled. Actually, it is a general rule, because 
when the order is doubled, we go exactly to a four-
block structure, found here in a slightly different 
form with respect to W12. It is followed by a weigh-
ing matrix W28 which does not contain anything 
new or unexpected; by doubling the order, it pro-
duces a Hadamard matrix H56. These two matrices 
are shown in Fig. 7.

Extended Ryser’s Bound and  
its Generalizations

The episode with critical order 24 shows that 
matrix structures can become more complex. In 
what follows, we confirm the result obtained in 
[13] as on order 32 we again meet a doubly sym-
metric Hadamard matrix of an order of Silvester’s 
sequence. For reference, a structure which is not 
doubly symmetric is shown next to it in Fig. 8. 
Remember that the known two-circulant Golay’s 
matrices are not symmetric.

Analysis has shown that order 32 describes the 
generalization of Ryser’s conjecture for two-circu-
lant structures. Beyond this order, it is impossible 
to obtain a Hadamard matrix in two-circulant form. 
Nevertheless, our experience with searching for 
symmetric structures by a determinant optimization 
program shows that symmetric codes still have some 
safety margin: a doubly symmetric weighing ma-
trix W36. By doubling its order, you can turn it into 
a symmetric Hadamard matrix H72 shown in Fig. 9.

This additional experience supplements the esti-
mation of Ryser’s bound for two-circulant orthogo-

nal matrices performed in [13] by new details about 
weighing matrices.

Two-circulant matrices H40 and H52 are not ma-
trices of Silvester’s type. They belong to sequences 
of unsymmetric matrices of 20-fold and 52-fold or-
ders (Fig. 10).

The new doubly symmetric weighing matrix W52 
we have found can produce, through doubling its 
order, a nearly symmetric Hadamard matrix H104 
shown in Fig. 11. In other words, from the viewpoint 
of searching for symmetric matrices, this family is 
preferable, being considerably different from Mark 
Golay’s two-circulant matrices. Golay’s sequences 
of orders 2, 10 and 26 producing Hadamard ma-
trices of orders 4, 20 and 52 yield unsymmetric 
codes, so their practical alternative can be sym-
metric codes of weighing matrices of respective or- 
ders.

The symmetry of orthogonal matrices on the 
specified orders and the very fact of their exist-
ence is a subject of modern studies. According to a 
new assumption which resulted from considering a 
chain of two-circulant Hadamard matrices, order 
64 is a key for checking the extended conjecture.

 Fig. 8. Two matrices H32 

 Fig. 9. Portraits of matrices W36 и H72

 Fig. 10. Portraits of matrices H40 and H52

 Fig. 11. Portraits of matrices W52 and H104

 Fig. 12. Symmetric and unsymmetric matrices H64
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Order 64 is the simplest one for search and sym-
metry check of Hadamard matrices from Silvester’s 
sequence. For this order, we have identified the 
symmetric four-circulant matrix shown in Fig. 12.

If a symmetric two-circulant matrix Н64 does 
not exist (which is confirmed by our experiment 
on searching, with a formal algorithm, for matri-
ces optimal by determinant), then on higher orders 
there are no symmetric two-circulant matrices.

Chains of Golay’s matrices H20 — H40 –… and 
H52 — H104 –… of 20-fold and 52-fold orders are ap-
parently unsymmetric. 

Algorithm Scheme

Fig. 13 shows a simplified scheme of the algo-
rithm developed by the authors. It consists of three 
sequentially performed blocks (from left to right):

— two-circulant matrix generator; 
— cross-accumulator which provides the possi-

bility for the matrices to swap their parts A and B;
— two-circulant matrix determinant optimizer. 
With software implementing the proposed algo-

rithm, you can control the optimized determinant 
and visually control the structure of the resulting 
matrix.

The determinant optimizer is fully considered 
in [16] and will not be discussed here. We will only 
note that it is a novel scheme, not like any other one 
widely known from the numerical analysis litera-
ture. It optimizes not the determinant calculation 
algorithm, but a matrix with n2 elements.

A matrix with a two-circulant structure has a 
stable local determinant, because to let the itera-
tions go to the absolute maximum, you would have 
to rebuild the rigidly specified initial structure. It 
is much easier to convert the matrix elements 1 to 0 
or –1, providing that the result is fixed in the form 
of a Hadamard matrix or weighing matrix if they 
exist. This scheme can easily be transformed for 
tetracycle search.

The cross-accumulator is a block which signifi-
cantly reduces the time cost of generating the nec-
essary initial matrices. At this stage, the blocks A 
and B can be relatively random, and the combina-
tional circuit which allows the initial matrices to 
swap their already generated parts saves the com-
puting resources. Besides, the matrices accumulat-

ed in the database can be cached, being spread over 
buffer zones according to the value of a certain 
cache function. Blocks which considerably differ 
from each other are filtered and never come to the 
cross-accumulator input together.

These preliminary measures enrich the output 
of the cross-accumulator, giving the optimizer the 
material it needs. Such an algorithm can be imple-
mented in several languages. We have developed 
software versions in C , Pascal and Javascript. 
Each of these versions has its advantages.

The implementation in C is the fastest one 
but needs a heavy compiler and is not suitable for 
all computers. The Pascal implementation is slower 
but more universal; it can be run under any version 
of Windows starting from XP. The Javascript im-
plementation within mathscinet.ru international 
mathematical network is available for wide circles 
of scientists and researchers from different coun-
tries, as well as for students studying orthogonal 
transformations.

Javascript software has another implicit advan-
tage: it provides the opportunity for a wide circle of 
users to modify the underlying algorithm. This is 
very valuable in a research when you need to mod-
ify both the algorithm and the construction of the 
calculated matrix.

Apart from the cyclic array form, there is its neg-
acyclic form, when during a shift of a block row its 
last pushed-out element is carried to the beginning 
with its sign inverted. Besides, the size of a two-cir-
culant matrix can be reduced by several elements 
using the matrix border distinctive in its wide vari-
ety of implementation. Most commonly, Hadamard 
and weighing matrices have structures with unary 
or binary border, leading to a multi-block imple-
mentation of the matrix core. Studying the cores 
can explain on which structure the absolute deter-
minant maximum is attainable and where it goes to 
from a two-circulant structure with buffer zeros. 
However, the search for universal cores of orthog-
onal matrices is beyond the scope of this research.

The Novelty of the Results

Hadamard and weighing matrices are an object 
of intensive studies because of their application in 
information processing; in particular, image pro-
cessing. New facts are regularly discovered: for 
example, an exhaustive search for rows in weigh-
ing matrices with a single zero (Belevitch matrices) 
showed recently that these matrices do not exist in 
a two-circulant form on order 66. The same, accord-
ing to some experimental results, if true for order 
86. These orders follow each other with a step of 20.

On order 46, Maton’s result is widely known. He 
found a solution in the form of a five-block matrix:  Fig. 13. Algorithm scheme
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in two of these five, not elements are shifted but en-
tire sequences of elements. These results are very 
valuable because forms of matrices with an abso-
lute determinant maximum are not theoretically 
known, and the discovery of Belevitch matrices of 
orders 66 and 86 stimulates the research in this 
field. So far, the question about what Maton’s struc-
ture turns into when the order increases by 20 has 
no answer, either.

Studies of weighing matrices have been focused 
mostly on forms with many zeros. Considering 
them a natural supplement to two-circulant 
Hadamard matrices when the latter do not exist 
is a new approach. Especially new is the idea that 
they expand symmetric structures, because the 
extended Ryser’s bound as such, up to order 32, 
was discovered and studied quite recently, with 
the use of supercomputers in a scientific centre 
in Canada. Hence, the results of our experiment 
introduce a significant correction to this knowl-
edge of two-circulant matrices, showing what a 
symmetric structure turns into when it cannot be 
embodied in the form of matrices with elements 1  
and –1.

The discovery of symmetric two-circulant weigh-
ing matrices W(n, n – 2) on orders of Hadamard 
matrices n 4t makes them available for practical 
applications and poses new theoretical problems: 
in particular, what Ryser’s bound is for weighing 
matrices. Symmetric weighing matrices with two 
zeros supplement symmetric Belevitch matrices in 
the sense that in both cases they are a source for 
Hadamard matrices of a doubled order. Finite field 
theory receives a new application domain here, as 
we have to find out how to calculate these new ma-
trices; sometimes, for very high orders.

For video information coding systems, the 
two-circulant scheme is good because it is relative-
ly simple to implement. Omissions of two-circulant 
Hadamard matrices caused unnecessary problems 
for the applications in passing to tetracyclic con-
structions. In other words, the results of the re-
search in this area seriously affects the efficiency 
of the applications.

Some Applications for Visual Information 
Transmission Systems

The transmission of visual information, i.e. im-
ages or frame-by-frame video, is an integral fea-
ture of territory monitoring systems, multifunc-
tional registration systems, distributed industrial 
systems, security surveillance systems, and other 
systems which use open networks to build their in-
frastructure. The information transmitted in such 
distributed video systems, even not top-secret in-
formation, needs to be protected from unauthor-

ized access, distortion in the communication chan-
nels or substitution.

Generally, the process of protecting visual in-
formation goes as follows. At the transmitting 
side of a distributed system, the protected infor-
mation is shaped. Then it is directed to a commu-
nication channel where it may become a target for 
the above-mentioned threats. At the receiving side, 
the protected information is recast into the initial 
form, along with finding out whether it has been 
distorted by noise or deliberately changed by a third 
party. Depending on the implementation of the 
method and circuitry, the visual information can 
come to the receiving side either with or without  
losses.

An effective way to protect visual information 
from unauthorized usage is the method of bilater-
al matrix masking [17]. According to it, an image 
(frame) P at the transmitting side is masked by an 
orthogonal Hadamard matrix as Y HTPH. Such a 
transformation visually destroys the image down to 
a level similar to noise, with computing cost much 
smaller compared to coding methods. This allows 
you to mask images (video frames) in real time, as 
fast as they come from the video camera matrix.

The shaped and masked image Y is passed 
through the communication channel to the re-
ceiving side where it undergoes a reverse bilateral 
transformation in order to obtain the initial image 
according to the expression P (HT)–1YH–1.

The use of orthogonal Hadamard matrices  
H (H–1 HТ) simplifies the computing down to 
P HYHT. In this case, the reverse transformation 
repeats the direct one with a precision of transpos-
ing the masking matrix; also, there is no need to 
separately store or calculate the reverse matrix: 
this saves memory when the method is implement-
ed within the system. The next advantage can be 
provided by switching to Hadamard matrices with 
symmetric structures [18] for which the amount of 
the stored data to produce an order-n Hadamard 
matrix of circulant or two-circulant structure can 
be no more than n elements, as many as one row of 
a matrix.

In a similar way, we can implement the method 
of noise-proof image coding used in data trans-
mission systems when the ratio signal/noise is low, 
known as strip transformation [19]. However, for 
this transformation two different orthogonal ma-
trices are used (those of premultiplication and post-
multiplication), and the multiplication itself yields 
Kronecker product, adding small extra computing 
cost with software implementation of the method, 
as compared to masking.

In order to prevent image substitution or chang-
ing, the procedure of introducing digital water-
marks can be applied, with the use of Hadamard 
transformation [20].
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Conclusion

The principal question of Ryser’s theory about 
two-circulant Hadamard matrices is determin-
ing the maximum achievable order of symmetry 
and the form of symmetric matrices which are ex-
ceptions. For example, the conference matrices of 
Maton’s construction found for order 46 already 
have non-circulant blocks in their structure.

If there are no symmetric two-circulant struc-
tures, and Golay’s codes produce only unsymmetric 
blocks, then the source for symmetric Hadamard 
matrices of orders higher than 32 will be two-circu-

lant and four-circulant weighing Seberry matrices 
with two zeros on their diagonals.

The extension of Ryser’s conjecture can explain 
the peculiarities of the order alteration followed 
by Hadamard matrices and weighing matrices. It 
can also explain the difficulties experienced when 
searching for matrices of Hadamard family and 
symmetric conference matrices.

The work has been carried out with the sup-
port of Ministry of Education and Science of the 
Russian Federation for research within the devel-
opment part of the scientific governmental task 
#2.2200.2017/4.6 
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Двуциклические матрицы Адамара, взвешенные матрицы и гипотеза Райзера
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Введение: матрицы Адамара и взвешенные матрицы образуют единое семейство, причем свойство последних заполнять пусто-
ты матричного пространства посредством обнуления части элементов изучено недостаточно полно. Цель: исследование влияния 
порядков ортогональных матриц, используемых для обработки информации, на их структуру. Результаты: рассмотрено расшире-
ние гипотезы Райзера, трактующей критические для циклических матриц Адамара порядки, на матрицы Адамара и взвешенные 
матрицы, состоящие из двух циклических блоков. Приведены примеры матриц Адамара, расширенных до выявленных на новом 
критическом порядке, равном 32, с симметричными блоками, и более высоких порядках — с несимметричными блоками. Пред-
ставлены чередующиеся с матрицами Адамара и заменяющие их двуциклические взвешенные симметричные и несимметричные 
матрицы. Приведен случай-исключение — порядок 24, на котором нет двуциклических матриц Адамара и взвешенных матриц, 
что вынужденно переводит решение задачи к четырехблочным конструкциям. Отмечена особая линия матриц Адамара порядков, 
кратных 20 и 52, выделенных среди остальных матриц асимметрией своих блоков. Сформулировано новое предположение о кри-
тическом порядке 64. 

Ключевые слова — обработка информации, помехоустойчивое кодирование, маскирование изображений, ортогональные ма-
трицы, квазиортогональные матрицы Адамара, матрицы Белевича, взвешенные матрицы, двуциклические матрицы, гипотеза 
Райзера. 
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