Depolarization Effects of Radio Wave Propagation in Various Land Built-Up Environments

Полный текст:


Purpose: A detailed analysis of the spatial-temporal variations of the polarized characteristics of an elliptically polarized radio wave propagating in various built-up environments. Methods: Analysis of the classical methods used for defining the polarized parameters of homogeneous monochromatic plane waves, arriving at the receiver antenna from various directions in free space, is briefly presented. These methods are adapted for the propagation scenarios occurring in four land built-up environments, where the complicated stochastic variations of wave polarization parameters have been observed experimentally and when the canonical methods are ineffective. The 3D classical presentation of the geometrical parameters of the polarized ellipse and Stocks parameters are used to analyze the co-polarized and cross-polarized components of the wave intensity in the vertical and horizontal plane of the polarization ellipse and their relations with the main parameters and characteristics of the built-up terrain are explored. Practical Relevance: The presented analysis allows to estimate theoretically the angle of wave depolarization and the polarization loss effects in rural, mixed residential, sub-urban, and urban areas. Such estimation allows designers of cellular networks to predict reception problems due to de-polarization in the presence of stochastic disturbances. Measurements that are taken prior to the deployment of cellular networks can now be limited to “problematic antenna positions” that are predicted by the presented model. To the best knowledge of the authors such results are presented for the first time.

Об авторах

Иегуда Бен-Шимол
Негевский университет им. Бен-Гуриона

Натан Шаевич Блаунштейн
Негевский университет им. Бен-Гуриона

M. Sergeev
Saint-Petersburg State University of Aerospace Instrumentation

Список литературы

1. Stutzman W. L., and G. A. Thiele. Antenna Theory and Design. New York, John Wiley & Sons, 1981. 598 p.

2. Kraus J. D. Antennas. 2nd ed. New York, McGraw-Hill, 1988. 892 p.

3. Ponamarev G. A., Kulikov A. N., and Tel’pukhovsky E. D. Propagation of Ultra-Short Waves in Urban Environments. Tomsk, Rasko Publ., 1991. 222 p. (In Russian).

4. Balanis C. A. Antenna Theory: Analysis and Design. 2nd ed. New York, John Wiley & Sons, 1997. 941 p.

5. Drabowitch S., Papiernik A., Griffiths H., Encinas J., and Smith B. L. Modern Antennas. London, Chapman & Hall, 1998. 611 p.

6. Kraus J. D., and Marhefka R. Antennas. New York, McGraw-Hill, 2001. 547 p.

7. Chryssomallis C., and Christodoulou Ch. Antenna Radiation Patterns. In: John and Wiley Encyclopedia of Electrical and Electronics Engineering, 2001, ch. 3, pp. 164-175.

8. Blaunstein N., and Christodoulou C. Radio Propagation and Adaptive Antennas for Wireless Communication Links: Terrestrial, Atmospheric and Ionospheric. New Jersey, Wiley and Sons-InterScience, 2008. 614 p.

9. Morgan M., and Evans V. Synthesis and Analysis of Polarized Ellipses. In: Antennas of Elliptic Polarization. New York, John Wiley & Sons, 1961. 385 p.

10. Kanare’kin D. B., Pavlov N. F., and Potekhin V. A. Polarization of Radiolocation Signals. Moscow, Sovetskoe radio Publ., 1966. 440 p. (In Russian).

11. Gusev K. G., Filatov A. D., and Sopolev A. P. Polarization Modulation. Moscow, Sovetskoe radio Publ., 1974. 286 p. (In Russian).

12. Lee W. C., and Brandt R. H. The Elevation Angle of Mobile Radio Signal Arrival. IEEE Trans. Communic. 1973, vol. 21, no. 11, pp. 1194-1197.

13. Bitler Y. S. A Two-Channel Vertically Spaced UHF Diversity Antenna System. Proc. of Microwave Mobile Radio Symp., Colorado, 1973, pp. 13-15.

14. Kozono S., Tsuruhara T., and Sakamoto M. Base Station Polarization Diversity Reception for Mobile Radio. IEEE Trans. on Vehicular Technology, 1984, vol. 33, no. 4, pp. 301-306.

15. Vaughan R. G., and Andersen J. B. Antenna Diversity in Mobile Communications. IEEE Trans. on Vehicular Technology, 1987, vol. 36, no. 4, pp. 149-172.

16. Vaughan R. G. Polarization Diversity in Mobile Communications. IEEE Trans. on Vehicular Technology, 1990, vol. 39, no. 3, pp. 177-186.

17. Lemieux J-F., El-Tanany M. S., and Hafez H. M. Experimental Evaluation of Space/Frequency/Polarization Diversity in the indoor Wireless Channel. IEEE Trans. on Vehicular Technology, 1991, vol. 40, no. 3, pp. 189-198.

18. Turkmani A. M. D., Arowojolu A. A., Jefford P. A., and Kellett C. J. An Experimental Evaluation of the Performance of Two-Branch Space and Polarization Diversity Schemes at 1800 MHz. IEEE Trans, on Vehicular Technology, 1995, vol. 44, no. 2, pp. 318-326.

19. Bertoni H. L. Radio Propagation for Modern Wireless Systems. New Jersey, Prentice Hall PTR, Inc., 2000. 258 p.

20. Blaunstein N. Prediction of Cellular Characteristics for Various Urban Environments. IEEE Antennnas and Propagat. Magazine, 1999, vol. 41, no. 6, pp. 135-145.

21. Blaunstein N., Giladi R., Levin M. Unified Approach to Predict of Loss Characteristics in the Urban Microcellular Environments with Rectangular Gridplan Streets. Radio Science, vol. 34, no. 5, 1999, pp. 1085-1102.

22. Blaunstein N., Censor D., Katz D., Freedman A., and Matityahu I. Radio Propagation in Rural Residential Areas with Vegetation. J. Electromagnetic Waves and Applications, 2002, vol. 17, no. 7, pp. 1039-1041.

23. Blaunstein N. Distribution of Angle-of-Arrival and Delay from Array of Buildings Placed on Rough Terrain for Various Elevations of Base Station Antenna. Journal of Communications and Networks, 2000, vol. 2, no. 4, pp. 305-316.

24. Blaunstein N., Katz D., Censor D., Freedman A., Matityahu I., and Gur-Arie I. Prediction of Loss Characteristics in Built-up Areas with Various Buildings Overlay Profiles. IEEE Anten. Propagat. Magazine, 2001, vol. 43, no. 6, pp. 181-191.

25. Blaunstein N., Toulch M., Bonek E., Christodoulou Ch., et al. Azimuth, Elevation and Time Delay Distribution in Urban Wireless Communication Channels. Journal of Antennas and Propagation Magazine, 2006, vol. 48, no. 2, pp. 112-126.

26. Blaunstein N., Toulch M., Laurila J., Bonek E., et al. Signal Power Distribution in the Azimuth, elevation and Time Delay Domains in Urban Environments for Various Elevations of Base Station Antenna. IEEE Trans. Antennas and Propagation, 2006, vol. 54, no. 10, pp. 2902-2916.

27. Lempianen J., Laiho-Steffens J. K., and Walker A. F. Experimental Results of Cross Polarization Discrimination and Signal Correlation Values for a Polarization Diversity Scheme. Proc. of 47th IEEE Vehicular Technology Conf., 1997, pp. 1498-1502.

28. El-Sallabi H. M., and Tervonen J. Polarization Dependence of Multipath Propagation Characteristics in Line of Sight Microcellular Channels. Proc. of 12th Int. Conf. on Wireless Communication (Wireless 2000), Canada.

29. El-Sallabi H. M. Polarization Consideration in Characterizing Radio Wave Propagation in Urban Micro-cellular Channels. Proc. of 51st Vehicular Technology Conf., Greece, 2001, pp. 411-415.

30. Shapira J., and Miller S. A Novel Polarization Smart Antenna. Proc. of 51st Vehicular Technology Conf., Greece, 2001, pp. 253-257.

31. Shapira J., and Miller S. Transmission Considerations and Polarization Smart Antennas. Proc. of 51st Vehicular Technology Conf., Greece, 2001, pp. 258-262.

32. Bertoni H. L., and Walfisch J. A Theoretical Model of UHF Propagation in Urban Environment. IEEE Trans. on Antenas and Propagation, 1988, vol. 36, no. 12, pp. 1788-1796.

Дополнительные файлы

Для цитирования: Бен-Шимол И., Блаунштейн Н.Ш., . . Информационно-управляющие системы. 2015;(1):68-76.

For citation: Ben-Shimol Y..., Blaunstein N..., Sergeev M.B. Depolarization Effects of Radio Wave Propagation in Various Land Built-Up Environments. Information and Control Systems. 2015;(1):68-76. (In Russ.)

Просмотров: 155

Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.

ISSN 1684-8853 (Print)
ISSN 2541-8610 (Online)