Three-Level Cretan Matrices Constructed via Conference Matrices

Полный текст:


Purpose: Orthogonal matrices with many applications introduced by J. J. Sylvester have been become famous: Hadamard matrices, symmetric conference matrices, and weighing matrices are the best known of these matrices with entries from the unit disk. The goal of this note is to develop a theory of such orthogonal matrices based on preliminary research results. Methods: Extreme solutions (using the determinant) have been established by minimization of the maximum of the absolute values of the elements of the matrices followed by their subsequent classification. Results: We show that if S is a core of a symmetric conference weighing matrix, then there exists a three-level orthogonal matrix, X. We apply this result to the three-level matrices given by Paley using Legendre symbols to give a new infinite family of Cretan orthogonal matrices. An algorithmic optimization procedure is known which raises the value of the determinant. Our example is for Cretan matrices upto, say four decimal places (but could be made more). Practical relevance: The over-riding aim is to seek Cretan matrices as they have many applications in image processing (compression, masking) to statisticians undertaking medical or agricultural research, and to obtain lossless circuits for telecommunications conference networking. Web addresses are given for other illustrations and other matrices with similar properties. Algorithms to construct Cretan matrices have been implemented in developing software of the research program-complex.

Об авторах

N. Balonin
Saint-Petersburg State University of Aerospace Instrumentation

M. Sergeev
Saint-Petersburg State University of Aerospace Instrumentation

Ofer Hadar
Ben-Gurion University of the Negev

Jennifer Seberry
University of Wollongong

Список литературы

1. Balonin N. A., Mironovsky L. A. Hadamard Matrices of Odd Order. Informatsionno-upravliaiushchie siste- my [Information and Control Systems], 2006, no. 3, pp. 46-50 (In Russian).

2. Balonin N. A., Seberry Jennifer. Remarks on Extremal and Maximum Determinant Matrices with Moduli of Real Entries - 1. Informatsionno-upravliaiush- chie sistemy [Information and Control Systems], 2014, no. 5(72), pp. 2-4.

3. Balonin N. A., Sergeev M. B. Quasi-Orthogonal Local Maximum Determinant Matrices. Applied Mathematical Sciences, 2015, vol. 9, no. 6, pp. 285-293. doi:10.12988/ams.2015.4111000 Wallis (Seberry), Jennifer. Orthogonal (0,1,-1) Matrices.

4. Proc. of First Australian Conference on Combinatorial Mathematics, TUNRA, Newcastle, 1972, pp. 61-84. Available at: (accessed 16 February 2015).

5. Seberry Jennifer, Yamada M. Hadamard Matrices, Sequences, and Block Designs. Contemporary Design Theory: A Collection of Surveys. J. H. Dinitz and D. R. Stinson eds. John Wiley and Sons, Inc., 1992, pp. 431-560.

6. Paley, R. E. A. C. On Orthogonal Matrices. J. Math. Phys., 1933, no. 12, pp. 311-320.

7. Balonin N. A., Seberry Jennifer. A Review and New Symmetric Conference Matrices. Informatsionno-upravliaiushchie sistemy [Information and Control Systems], 2014, no. 4(71), pp. 2-7.

8. Hadamard J. Resolution d’une Question Relative aux Determinants. Bulletin des Sciences Mathematiques, 1893, vol. 17, pp. 240-246 (In French).

9. Seberry Jennifer. Regular Hadamard Matrices of Order 36. Available at: matrices/H36/36R.html (accessed 16 February 2015).

10. Balonin N. A. Existence of Mersenne Matrices of 11th and 19th Orders. Informatsionno-upravliaiushchie sistemy [Information and Control Systems], 2013, no. 2, pp. 89-90 (In Russian).

11. Balonin N. A., Sergeev M. B. On the Issue of Existence of Hadamard and Mersenne Matrices. Informatsionno- upravliaiushchie sistemy [Information and Control Systems], 2013, no. 5(66), pp. 2-8 (In Russian).

12. Sergeev А. М. The Generalized Matrices of Mersenne and Balonin’s Conjecture. Automatic Control and Computer Sciences, 2014, no. 4, pp. 35-43. doi:10.3103/S0146411614040063

Дополнительные файлы

Для цитирования: ., ., ., . . Информационно-управляющие системы. 2015;(2):4-6.

For citation: Balonin N.A., Sergeev M.B., Hadar O., Seberry J. Three-Level Cretan Matrices Constructed via Conference Matrices. Information and Control Systems. 2015;(2):4-6. (In Russ.)

Просмотров: 30

Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.

ISSN 1684-8853 (Print)
ISSN 2541-8610 (Online)