An Efficient Cross-Layer Aware Mapping of VoIP Calls In Wireless OFDMA System. Part I. Problem description and channel tracking


https://doi.org/10.15217/issn1684-8853.2015.2.90

Полный текст:


Аннотация

Purpose: This work addresses the problem of efficient broadcasting of resource allocations descriptors for VoIP traffic in mobile OFDMA-based wireless systems. Methods: We present the problem of mapping overhead and show that it can be substantially reduced by using semi-persistent allocations and by taking advantage of the periodicity of VoIP frames, generated by a multi-phase vocoder. To handle the impact of mobility on the characteristics of the wireless channel we utilize a cross-layer decision approach that tracks the channel quality and predicts the expected mobile user behavior such that the system may under-react to channel changes in some cases. Results: We explicitly show how the variability of the wireless channel can be tracked by using a Markovian model with a set of discrete states. By estimating both state- and transition probabilities of the multi-state Markovian model, we underline the foundations for a cross-layer decision algorithm that is able to overlook short transitions in channel states, without changing the modulation and/or the coding schemes. The main advantage of this approach is the ability to support multiple codecs, or a single codec with different operational modes, both result in different packet sizes and different periods. Practical relevance: The proposed channel tracking mechanism is simple enough to be implemented in the base station of any practical OFDMA-based system using the WiMAX or LTE technology.

Об авторах

Y. Ben-Shimol
Ben-Gurion University of the Negev
Россия


I. Kitroser
Ben-Gurion University of the Negev
Россия


Список литературы

1. 16-2009 IEEE Standard for Local and Metropolitan Area Networks. Part 16: Air Interface for Fixed Broadband Wireless Access Systems. IEEE 802.16-2004, May 2009.

2. IEEE Standard for Local And Metropolitan Area Networks. Part 16: Air Interface for Broadband Wireless Access Systems. Amendment 3: Advanced Air Interface. IEEE 802.16m-2011, May 2011.

3. Tech. Spec. Group Radio Access Network; Evolved Universal Terrestrial Radio Access (Eutra); LTE Physical Layer General Description (Release 8). 3GPP TS 36.201 V8.1.0, November 2007.

4. Ultra Mobile Broadband (UMB) Air Interface Specification. 3GPP2 C.S0084 V2.0, September 2007.

5. So J. W. Performance Analysis of VoIP Services in the IEEE 802.16e OFDMA System with Inband Signaling. IEEE Transactions on Vehicular Technology, 2008, vol. 57, no. 3, pp. 1876-1886.

6. Lu J., McBeath S., Barber P., Bourlas Y., et al. Persistent Allocation. IEEE C802.16maint-08/056r3, 2008.

7. Fong M. H., Novak R., Mcbeath S., and Srinivasan R. Improved VoIP Capacity in Mobile WiMAX Systems Using Persistent Resource Allocation. IEEE Communications Magazine, 2008, vol. 46, pp. 50-57.

8. 16-2004 IEEE Standard for Local and Metropolitan Area Networks. Part 16: Air Interface for Fixed Broadband Wireless Access Systems. IEEE 802.162004, October 2004.

9. IEEE Standard for Local and Metropolitan Area Networks. Part 16: Air Interface for Fixed and Mobile Broadband Wireless Access Systems. Amendment 2: Physical and Medium Access Control Layers for Combined Fixed and Mobile Operation In Licensed Bands and Corrigendum 1. IEEE 802.16e-2005, February 2006.

10. Das S. S., Ghosh P., and Chandhar P. Estimation of Effective Radio Resource Usage for VoIP Scheduling in OFDMA Cellular Networks. IEEE 75th Vehicular Technology Conf. (VTC Spring), 2012, pp. 1-6.

11. Kitroser I., Chai E., and Ben-Shimol Y. Efficient Mapping of Multiple VoIP Vocoders in WiMAX Systems. Wireless Communications and Mobile Computing, 2009, vol. 11, no. 6, pp. 667-678.

12. So J. Scheduling and Capacity of VoIP Services (chapter) in Wireless OFDMA Systems. VoIP Technologies, InTech, 2011.

13. Holma H., Kallio J., Kuusela M., Lund£n P., et al. Voice Over IP (VoIP). In: LTE for UMTS. John Wiley & Sons, 2009, pp. 259-281.

14. Jiang D., Wang H., Malkamaki E., and Tuomaala E. Principle and Performance of Semi-Persistent Scheduling for VoIP in LTE Systems. Intern. Conf. on Wireless Communications, Networking and Mobile Computing, September 2007, pp. 2861-2864.

15. Saha S. and Quazi R. Priority-Coupling-A Semi-Persistent Mac Scheduling Scheme for VoIP Traffic on 3G LTE. 10th Intern. Conf. on Telecommunications (ConTEL 2009), June 2009, pp. 325-329.

16. Konishi S., Komine T., and Shinbo H. A Study on Persistent Scheduling for VoIP Services in UMB System. Personal Indoor and Mobile Radio Communications (PIMRC), 2008, pp. 1-5.

17. McBeath S., at al. Efficient Bitmap Signaling for Voip in OFDMA. Vehicular Technology Conf., October 2007, pp. 1867-1871.

18. Shrivastava S. and Vannithamby R. Group Scheduling for Improving VoIP Capacity. IEEE 802.16e Networks, Vehicular Technology Conf., 2009, pp. 26-29.

19. So J. W. An Efficient Uplink Mapping Scheme for VoIP Services in the IEEE 802.16e OFDMA System. International Journal of Electronics and Communications (AEU), 2008, vol. 62, no. 10, pp. 768-776.

20. Bi Q., et al. Performance and Capacity of Cellular OFDMA Systems with Voice-Over-IP Traffic. IEEE Transactions on Vehicular Technology, 2008, vol. 57, no. 6, pp. 3641-3652.

21. Sambale K. and Klagges K. Increasing the VoIP Capacity of WiMAX Systems Through Persistent Resource Allocation. 15th European Wireless Conf, 2009, pp. 308-313.

22. Cho C., Jin H., Song N. O., and Sung D. K. MCS Selection Algorithms for a Persistent Allocation Scheme to Accommodate VoIP Services in IEEE 802.16e OFDMA System. Proc. of the IEEE 20th Intern. Symp. on Personal, Indoor and Mobile Radio Communications (PIMRC), 2009, pp. 2122-2126.

23. Tao M.-H. and Hsiao Y.-C. Slot-Based Persistent Allocation for WiMAX Systems. IEEE 21st Intern. Symp. on Personal Indoor and Mobile Radio Communications (PIMRC), 2010, pp. 1271-1275.

24. Speech Codec Speech Processing Functions; Adaptive Multi-Rate (AMR) Speech Codec; Transcoding Functions. 3GPP TS 26.090 V10.0.0, March 2011.

25. Ben-Shimol Y., Kitroser I., and Dinitz Y. Two-Dimensional Mapping for Wireless OFDMA Systems. IEEE Transactions on Broadcasting, 2006, vol. 52, pp. 388-396.

26. Sadeghi P., Kennedy R. A., Rapajic P. B., and Shams R. Finite-State Markov Modeling of Fading Channels - A Survey of Principles and Applications. IEEE Signal Processing Magazine, 2008, vol. 25, no. 5, pp. 57-80.

27. Wang H. and Moayeri N. Finite-State Markov Channel - A Useful Model for Radio Communications Channels. IEEE Transactions on Vehicular Technology, 1995, vol. 44, pp. 163-171.

28. Gilbert E. N. Capacity of а Burst-Noise Channel. Bell Syst. Tech. J, 1960, vol. 39, pp. 1253-1265.

29. Elliott E. O. Estimates of Error Rates for Codes on Burst-Noise Channels. Bell Syst. Tech. J, 1963, vol. 42, pp. 1977-1997.

30. Zhang Q. and Kassam S. A. Finite-State Markov Model for Rayleigh Fading Channels. IEEE Transactions on Communications, 1999, vol. 47, no. 11, pp.1688-1692.

31. Jakes W. C. (ed). Microwave Mobile Communications. 2nd ed. Wiley-IEEE Press, 1994. 656 p.

32. Rappaport T. S. Wireless Communications Principles and Practice. New York, NY, Prentice Hall, 1996. 641 p.

33. Rego V. Naive Asymptotics for Hitting Time Bounds. Acta Informatica, 1992, vol. 29, pp. 579-594.


Дополнительные файлы

Для цитирования: ., . . Информационно-управляющие системы. 2015;(2):90-97. https://doi.org/10.15217/issn1684-8853.2015.2.90

For citation: Ben-Shimol Y..., Kitroser I... An Efficient Cross-Layer Aware Mapping of VoIP Calls In Wireless OFDMA System. Part I. Problem description and channel tracking. Information and Control Systems. 2015;(2):90-97. (In Russ.) https://doi.org/10.15217/issn1684-8853.2015.2.90

Просмотров: 34


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1684-8853 (Print)
ISSN 2541-8610 (Online)