Доступ открыт Открытый доступ  Доступ закрыт Только для подписчиков

ЭВОЛЮЦИЯ МНОГОПРОЦЕССОРНЫХ СИСТЕМ СВЯЗИ — СОТОВЫХ И НЕСОТОВЫХ — В ИСТОРИЧЕСКОЙ ПЕРСПЕКТИВЕ. ЧАСТЬ 2


https://doi.org/10.31799/1684-8853-2018-5-94-103

Полный текст:


Аннотация

Постановка проблемы: целью данного обзора является анализ эволюции существующих и современных систем беспроводной связи, от второй генерации (2D) до пятой генерации (5G), а также изменения в технологиях и их сщщтветствующих теоретических основ и протоколов – от  Bluetooth, WLAN, WiFi и WiMAX до LTE, , OFDM/OFDMA, MIMO и LTE/MIMO продвинутых технологий с новой иерархтческой структурой дизайна сотовых карт–femto/pico/micro/macro.  Методы:  использованы новые теоретические подходы для описания продвинутых технологий, таких как, многопользовательская техеика разделения пользователей, OFDM и OFDM-новейший подход, новые аспекты описания MIMO систем на базе использования многолучёвых антенн, дизайн различных сотовых карт, основываясь на новых алгоритмах построения фемто/пико/микро/макро сот, а также новой методологии интегрирования новой MIMO/LTE системы на основе использования многолучёвых антенн. Результаты: создана новая методология описания много-пользовательского разделения, использования комбинированной OFDM/OFDMA модуляции для обхождения интерференции между пользователями и между символами в новых многопроцессорных системах, мультипликативных шумов, имеющих место в беспроводных многопроцессорных системах связи, вызванных явлениями многолучёвости.  В итоге предложено, как обойти эффекты распространения, имеющие место в наземных каналах связи, используя комбинацию  MIMO- и LTE-технологий, основанных на применении многолучевых антенн. Для этих целей разработан новый стохастический подход к проблеме, учитывающий особенности застройки земной поверхности, такие как профиль застройки домов, плотность застройки домов вокруг антенн базовой станции и пользователей, и т. д.  Эти характеристики позволяют в итоге оценить эффекты фединга как источника мультипликативного шума.  Практическая значимость: новая методология оценки эффектов, созданных мультипликативным шумом, интерференцией между пользователями и между символами, имкющими место в наземных системах беспроводной связи, позволяет прогнозировать практические аспекты существуюших и новых многопроцессорных беспроводных систем связи, такие как ёмкость (количество) пользователей и спектральная эффективность каналов пользователей для различных конфигураций построения сот  - фемто/пико/микро/макро, а также новейших конфигураций систем MIMO/LTE для построения будующих систем 4-го и 5-го поколений. 


Об авторах

А. М. Сергеев
Санкт-Петербургский государственный университет аэрокосмического приборостроения
Россия

Сергеев Александр Михайлович - кандидат технических наук, старший преподаватель кафедры вычислительных систем и сетей. В 2004 году окончил Санкт-Петербургский государственный университет аэрокосмического приборостроения по специальности «Вычислительные машины, комплексы, системы и сети». Является автором 32 научных публикаций.

Область научных интересов —численные методы, теория вычислительных процессов, проектирование специализированных процессоров.

Б. Морская ул., 67, Санкт-Петербург, 190000.

 



Н. Ш. Блаунштейн
Негевский университет им. Бен-Гуриона; Иерусалимский технологический институт
Израиль

Блаунштейн Натан Шаевич - доктор физико-математических наук, профессор Иерусалимского технологического института, профессор-эмиритус кафедры систем связи инженерного факультета Негевского университета им. Бен-Гуриона. В 1972 году окончил Томский государственный университет по специальности «Радиофизика и электроника, включая квантовую». В 1991 году защитил диссертацию на соискание ученой степени доктора физико-математических наук. Является автором около 200 научных публикаций, в том числе  12 монографий, пяти патентов и  трех изобретений.

Область научных интересов —  радиофизика, системы проводной и беспроводной связи, радары, оптика и лидары.

Беэр-Шева; Иерусалим.



Список литературы

1. Jakes W. C. Microwave Mobile Communications.Wiley, New York, 1974.

2. Lee S. C. Y. Mobile Cellular Telecommunication Systems. McGraw-Hill, New York, 1989.

3. Steele R. Mobile Radio Communication. IEEE Press,1992.

4. Proakis J. G. Digital Communications. 3d ed.McGraw-Hill, New York, 1995.

5. Stuber G. L. Principles of Mobile Communications.Kluwer Academic Publishers, Boston, 1996.

6. Peterson R. L., Ziemer R. E., and Borth D. E. Introduction to Spread Spectrum Communications. Prentice Hall PTR, New Jersey, 1995.

7. Rappaport T. S. Wireless Communications: Principles and Practice. Prentice Hall PTR, New Jersey,1996; (2nd ed.) in 2001.

8. Steele R., and Hanzo L. Mobile Communications. 2nded. John Wiley & Sons, Chickester, 1999.

9. Li J. S., and Miller L. E. CDMA Systems Engineering Handbook. Artech House, Boston-London, 1998.

10. Saunders S. R. Antennas and Propagation for Wireless Communication Systems. John Wiley& Sons, Chickester, 2001.

11. Burr A. Modulation and Coding for Wireless Communications. Prentice Hall PTR, New Jersey, 2001.

12. Molisch A. F. (Ed.). Wideband Wireless Digital Communications. Prentice Hall PTR, New Jersey, 2000.

13. Paetzold M. Mobile Fading Channels: Modeling, Analysis, and Simulation. John Wiley & Sons, Chickester, 2002.

14. Simon M. K., Omura J. K., Scholtz R. A., and Levitt B. K. Spread Spectrum Communications Handbook. McGraw-Hill, New York, 1994.

15. Glisic S. and Vucetic B. Spread Spectrum CDMA Systems for Wireless Communications. Artech House, Boston-London, 1997.

16. Dixon R. C. Spread Spectrum Systems with Commercial Applications. John Wiley & Sons, Chickester, 1994.

17. Viterbi A. J. CDMA: Principles of Spread Spectrum Communication. Addison-Wesley Wireless Communications Series, 1995.

18. Goodman D. J. Wireless Personal Communication Systems. Addison-Wesley, Reading, Massachusetts, 1997.

19. Schiller J. Mobile Communications. 2nd ed. Addison-Wesley Wireless Communications Series, 2003.

20. Molisch A. F. Wireless Communications. John Wiley & Sons, Chickester, 2007.

21. Blaunstein N. and Christodoulou C. Radio Propagation and Adaptive Antennas for Wireless Communication Links. 1st ed. Wiley & Sons, New Jersey, 2007.

22. Blaunstein N. and Christodoulou C. Radio Propagation and Adaptive Antennas for Wireless Communication Networks — Terrestrial, Atmospheric and Ionospheric. 2nd ed. Wiley & Sons, New Jersey, 2014.

23. Hadar O., Bronfman I., and Blaunstein N. Optimization of Error Concealment Based on Analysis of Fading Types. Part 1. Statistical Description of the Wireless Video Channel, Models of BER Determination and Error Concealment of Video Signals. Informatsionno-upravliaiushchie sistemy [Information and Control Systems], 2017, no. 1, pp. 72–82. doi:10.15217/issn1684-8853.2017.1.72

24. Hadar O., Bronfman I., and Blaunstein N. Optimization of Error Concealment Based on Analysis of Fading Types. Part 2. Modified and New Models of Video Signal Error Concealment. Practical Simulations and their Results. Informatsionno-upravliaiushchie sistemy [Information and Control Systems], 2017, no. 2, pp. 67–76. doi:10.15217/issn1684-8853.2017.2.67

25. Vostrikov A., Kurtyanik D., Sergeev A. Choosing Embedded WI-FI Module for Mobile Optic-Information Systems. Vestnik, 2018, no. 4, pp. 26–29 (In Russian).

26. Vostrikov A., Balonin Yu., Kurtyanik D., Sergeev A., Sinitsyna O. On Hybrid Method of Video Data Protection in IP-networks. Telekommunikatsii [Telecommunications], 2018, no. 2, pp. 34–39 (In Russian).

27. Erosh I., Sergeev A., Filatov G. Protection of Images During Transfer via Communication Channels. Informatsionno-upravliaiushchie sistemy [Information and Control Systems], 2007, no. 5, pp. 20–22 (In Russian).

28. Sergeev A. Generalized Mersenne Matrices and Balonin’s Conjecture. Automatic Control and Computer Sciences, 2014, vol. 48, no. 4, pp. 214–220.

29. Sergeev A. M., Blaunstein N. S. Orthogonal Matrices with Symmetrical Structures for Image Processing. Informatsionno-upravliaiushchie sistemy [Information and Control Systems], 2017, no. 6, pp. 2–8 (In Russian). doi:10.15217/issn1684-8853.2017.6.2

30. Modulation and Coding Techniques in Wireless Communications. Ed. by Krouk E., and Semenov S. John Wiley & Sons, Chichester, United Kindom, 2011.

31. Specification of the Bluetooth System. Dec. 1, 1999. Available at: www.bluetooth.com. (accessed 15 August 2017).

32. Junaid M., Mufti M., and Ilyas M. U. Vulnerabilities of IEEE 802.11i Wireless LAN. Trans. Eng., Comput. and Technol., Feb. 2006, vol. 11, pp. 228–233.

33. IEEE 802.11 Working Group. Available at: http://grouper.ieee.org/groups/802/11/index.html (accessed 15 August 2017).

34. Wireless Ethernet Compatibility Alliance. Available at: http://www.wirelessethernet.org/index.html (accessed 15 August 2017).

35. Sharon O., and Altman E. An Efficient Polling MAC for Wireless LANs. IEEE/ACM Trans. on WiMAX Systems Evaluation Methodology V2.1etworking, 2001, vol. 9, no. 4, pp. 439–451.

36. IEEE std. 802.11-1999: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHL) Specifications, 1999.

37. Qainkhani I. A., and Hossain E. A Novel QoS-aware MAC Protocol for Voice Services over IEEE 802.11-based WLANs. J. Wireless Communic. and Mobile Comput., 2009, vol. 9, pp. 71–84.

38. Wireless LAN Medium Access Control and Physical Layer Specification. IEEE Press, 1999, Jan. 14.

39. Zyren J. Reliability of IEEE 802.11 High Rate DSSS WLANs in a High Density Bluetooth Environment; 802.11 section, 8–6, 1999.

40. Perahia E. IEEE 802.11n Development: History, Process, and Technology. IEEE Communic. Magazine, 2008, vol. 46, pp. 46–55.

41. Ni Q., Romshani L., and Turletti T. A Survey of QoS Enhancements for IEEE 802.11 Wireless LAN. J. Wireless Communic. and Mobile Comput., 2004, vol. 4, no. 5, pp. 547–566.

42. Wang W., Liew S. C., and Li V. O. K. Solutions to Performance Problems in VoIP over 802.11 Wireless LAN. IEEE Trans. Veh. Tech., 2005, vol. 54, no. 1, pp. 366–384.

43. Robinson J. W., and Randhawa T. S. Saturation Throughput Analysis of IEEE 802.11e Enhanced Distributed Coordination Function. IEEE J. Select. Areas of Communic., 2004, vol. 22, no. 5, pp. 917–928.

44. Wang P., Jiang H., and Zhuang W. 802.11e Enhancement for Voice Service. IEEE Wireless Communic., 2006, vol. 13, no. 1, pp. 30–35.

45. Perez-Costa X., and Camps-Mur D. IEEE 802.11e QoS and Power Saving Features Overview and Analysis of Combined Performances. IEEE Wireless Communic., 2010, vol. 17, no. 2, pp. 88–96.

46. Kopsel A., and Wolisz A. Voice Ptransmission in an IEEE 802.11 WLAN Based Access Network. Proc. of 4th ACM Int. Workshop on Wireless Mobile Multimedia (WoWMoM), Rome, Italy, 2001, pp. 24–33.

47. Veeraraghavan M., Chocker N., and Moors T. Support of Voice Services in IEEE 802.11 Wireles LANs. Proc. of IEEE INFOCOM’01, 2001, vol. 1, pp. 488–497.

48. Kim Y-J., and Suh Y-J. Adaptive Polling MAC Schemes for IEEE 802.11 Wireless LANs Supporting Voice-over-IP (VoIP) Services. J. Wireless Communic. and Mob. Comput., 2004, vol. 4, pp. 903–916.

49. Andersen J. B. Array Gain and Capacity of Known Random Channels with Multiple Element Arrays at Both Ends. IEEE J. Selected Areas in Coomun., 2000, vol. 18, pp. 2172–2178.

50. Blaunstein N., and Yarkoni N. Capacity and Spectral Efficiency of MIMO Wireless Systems in Multipath Urban Environment with Fading. Proc. of the European Conf. on Antennas and Propagation, EuCAP-2006, Nice, France, 2006, pp. 111–115.

51. Tsalolihin E., Bilik I., and Blaunstein N. MIMO Capacity in Space and Time Domain for Various Urban Environments. Proc. of 5th European Conf. on Antennas and Propagation, EuCAP, Rome, Italy, 11–15 April, 2011, pp. 2321–2325.

52. Chizhik D., Farrokhi F., Ling J., and Lozano A. Effect of Antenna Separation on Capacity of BLAST in Correlated Channels. IEEE Commun. Letters, 2000, vol. 4, no. 11.

53. Gesbert D., Shafi M., Shiu D., Smith P., and Naguib A. From Theory to Practice: An Overview of MIMO Space-Time Coded Wireless Systems. IEEE Journal on Selected Areas in Comm., 2003, vol. 21, no. 3, pp. 281–302.

54. Radioplan. RPS user Manual 5.4. Available at: http://www.actix.com (accessed 15 August 2017).

55. Philippe J., Schumacher L., Pedersen K., Mogensen P., and Frederiksen F. A Stochastic MIMO Radio Channel Model with Experimental Validation. IEEE J. Selected Areas in Commun., 2002, vol. 20, no. 6, pp. 1211–1226.

56. Gesbert D., Boleskei H., Gore D. A., and Paulraj A. J. Outdoor MIMO Wireless Channels: Models and Performance Prediction. IEEE Trans. Commun., 2002, vol. 50, no. 6, pp. 1926–1934.

57. Boleskei H., Borgmann M., and Paulraj A. J. On the Capacity of OFDM-based Spatial Multiplexing Systems. IEEE Trans. Commun., 2002, vol. 50, no. 1, pp. 225–234.

58. Boleskei H., Borgmann M., and Paulraj A. J. Impact of the Propagation Environment on the Performance of Space-Frequency Coded MIMO-OFDM. IEEE J. Select. Areas Commun., 2003, vol. 21, no. 2, pp. 427–439.

59. Chizik D., Ling J., Wolniansky P. W., Valenzuela R. A., Costa N., and Huber K. Multiple-imput-multiple-out-put Measurements and Modeling in Manhattan. IEEE J. on Selected Areas in Comm., 2003, vol. 23, no. 2, pp. 321–331.

60. Oyman O., Nabar R. U., Boleskei H., and Paulraj A. J. Characterizing the Statistical Properties of Mutual Information in MIMO Channels. IEEE Trans. Signal Processing, 2003, vol. 51, pp. 2784–2795.

61. Paulraj A. J., Gore D. A., Nabar R. U., and Boleskei H. An Overview of MIMO Communications — A Key to Gigabit Wireless. Proc. of IEEE, 2004, vol. 92, no. 2, pp. 198–218.

62. Forenza A., et al. Adaptive MIMO Transmission for Exploiting the Capacity of Spatially Correlated Channels. IEEE Trans. Vehic. Technol., 2007, vol. 56, no. 2, pp. 619–630.

63. Foschini G. J., and Gans M. J. On Limits of Wireless Communications in a Fading Environment when using Multiple Antennas. Wireless Person. Communic., 1998, vol. 6, no. 3, pp. 311–335.

64. Proakis J. G. Digital Communications. 4th ed. McGraw-Hill, New York, 2001.

65. Paulraj A. J., and Kailath T. Increasing Capacity in Wireless Broadcast Systems using Distributed Transmission/Directional Reception (DTDR). US patent 5,345,599, Sept. 6, 1994.

66. Foschini G. J. Layered Space-time Architecture for Wireless Communication in a Fading Environment when using Multiple Antennas. Bell Labs. Tech. J., 1996, vol. 1, no. 2, pp. 41–59.

67. Golden G. D., Foschini G. J., Valenzula R. A., and Wolniansky P. W. Direction Algorithm and Initial Laboratory Results using the V-BLAST Space-time Communication Architecture. Electron. Lett., 1999, vol. 35, no. 1, pp. 14–15.

68. Nabar R. U., Bolcskei H., Erceg V., Gesbert D., and Paulraj A. J. Performance of Multiantenna Signaling Techniques in the Presence of Polarization Diversity. IEEE Trans. Signal Process., 2002, vol. 50, no. 10, pp. 2553–2562.

69. Zheng L., and Tse D. Diversity and Multiplexing: A Fundamental Tradeoff in Multiple Antenna Channels. IEEE Trans. Inform. Theory, 2003, vol. 49, no. 5, pp. 1073–1096.

70. Varadarajan B., and Barry J. R. The Rate-diversity Trade-off for Linear Space-time Codes. Proc. IEEE Vehicular Tech. Conf., 2002, vol. 1, pp. 67–71.

71. Godovarti M, and Nero A. O. Diversity and Degrees of Freedom in Wireless Communications. Proc. ICASSP, May 2002, vol. 3, pp. 2861–2864.

72. Raleigh G. G., and Cioffi J. M. Spatio-temporal Coding for Wireless Communication. IEEE Trans. Communic., 1998, vol. 46, no. 3, pp. 357–366.

73. Wittniben A. Base Station Modulation Diversity for Digital Simulcast. Proc. IEEE Vehicular Tech. Conf., May 1991, pp. 848–853.

74. Seshadri N., and Winters J. H. Two Signaling Schemes for Improving the Error Performance of Frequency-Division-Duplex (FDD) Transmission Systems using Transmitter Antenna Diversity. Int. J. Wireless Inform. Networks, 1994, vol. 1, no. 1, pp. 49–60.

75. Alamouti S. M. A Simple Transmit Diversity Technique for Wireless Communications. IEEE J. Select. Areas Communic., 1998, vol. 16, no. 8, pp. 1451–1458.

76. Tarokh V., Seshandri N., and Calderbank A. R. Space-time Codes for High Data Rate Wireless Communication: Performance Criterion and Code Construction. IEEE Trans. Inform. Theory, 1999, vol. 45, no. 5, pp. 1456–1467.

77. Ganesan G., and Stoica P. Space-time Block Codes: A Maximum SNR Approach. IEEE Trans. Inform. Theory, 2001, vol. 47, no. 4, pp. 1650–1656.

78. Hassibi B., and Hochwald B. M. High-rate Codes that are Linear in Space and Time. IEEE Trans. Inform. Theory, 2002, vol. 48, no. 7, pp. 1804–1824.

79. Health Jr., R. W., and Paulraj A. J. Linear Dispersion Codes for MIMO Systems based on Frame Theory. IEEE Trans. Signal Process., 2002, vol. 50, no. 10, pp. 2429–2441.

80. Winters J. H. The Diversity Gain of Transmit Diversity in Wireless Systems with Rayleigh Fading. IEEE Trans. Veh. Technol., 1998, vol. 47, no. 1, pp. 119–123.

81. Bjerke B. A., and Proakis J. G. Multiple-antenna Diversity Techniques for Transmission over Fading Channels. Proc. Wireless Communic. and Networking Conf., Sept. 1999, vol. 3, pp. 1038–1042.

82. Heath Jr., R. W., and Paulraj A. J. Switching between Diversity and Multiplexing in MIMO Systems. IEEE Trans. Communic., 2005, vol. 53, no. 6, pp. 962–968.

83. Chandrasekhar V., Andrews J. G., and Gatherer A. Femtocell Networks: A Survey. IEEE Commun. Magazine, 2003, vol. 46, no. 9, pp. 59–67.

84. Shannon C. E. A Mathematical Theory of Communication. Bell System Tech. J., July and October 1948, vol. 27, pp. 379–423 and pp. 623–656.

85. Yeh S.-P., Talwar S., Lee S.-C., and Kim H. WiMAX Femtocells: A Perpective on Network Architecture, Capacity, and Coverage. IEEE Commun. Magazine, 2008, vol. 46, no. 10, pp. 58–65.

86. Knisely D. N., Yoshizawa T., and Favichia F. Standardization of Femtocells in 3GPP. IEEE Commun. Magazine, 2009, vol. 47, no. 9, pp. 68–75.

87. Knisely D. N., and Favichia F. Standardization of Femtocells in 3GPP2. IEEE Commun. Magazine, 2009, vol. 47, no. 9, pp. 76–82.

88. Chandrasekhar V., and Andrews J. G. Uplink Capacity and Interference Avoidance for Two-tier Femtocell Networks. IEEE Trans. Wireless Commun., 2009, vol. 8, no. 7, pp. 3498–3509.

89. Calin D., Claussen H., and Uzunalioglu H. On Femto Deployment Architectures and Macrocell Offloading Benefits in Joint Macro-femto Deployments. IEEE Commun. Magazine, 2010, vol. 48, no. 1, pp. 26–32.

90. Kim R. Y., Kwak J. S., and Etemad K. WiMAX Femtocel: Requirements, Challenges, and Solutions. IEEE Commun. Magazine, 2009, vol. 47, no. 9, pp. 84–91.

91. Lopez-Perez D., Valcarce A., de la Roche G., and Zhang J. OFDMA Femtocells: A Roadmap on Interference Avoidance. IEEE Commun. Magazine, 2009, vol. 47, no. 9, pp. 41–48.

92. Chandrasekhar V., Andrews J. G., Muharemovic T., Shen Z., and Gatherer A. Power Control in Two-tier Femtocell Networks. IEEE Trans. Wireless Commun., 2009, vol. 8, no. 8, pp. 4316–4328.

93. Yavuz M., Meshkati F., Nanda S., et al. Interference Management and Performance Analysis of UMTS/ HSPA Femtocells. IEEE Commun. Magazine, 2009, vol. 47, no. 9, pp. 102–109.

94. Femto Forum. Available at: http://www.femtoforum.org/femto/ (accessed 15 August 2017).

95. Blaunstein N. S., and Sergeev M. B. Channel Capacity Prediction for Femtocell-Macrocell Deployment Strategies in the Urban Environments with Congested Layout of Users. Informatsionno-upravliaiushchie sistemy [Information and Control Systems], 2012, no. 3, pp. 54–62 (In Russian).

96. Tsalolihin E., Bilik I., Blaunstein N., and Babich Y. Channel Capacity in Mobile Broadband Heterogeneous Networks based on Femto Cells. Proc. of Eu-CAP-2012 Int. Conf., Prague, Czech Republic, March 26–30, 2012, pp. 1–5.

97. Blaunstein N., and Levin M. VHF/UHF Wave Attenuation in a City with Regularly Spaced Buildings. Radio Science, 1996, vol. 31, no. 2, pp. 313–323.

98. Blaunstein N. Prediction of Cellular Characteristics for Various Urban Environments. J. Anten. and Propagatat. Magazine, 1999, vol. 41, no. 6, pp. 135–145.

99. Blaunstein N. Average Field Attenuation in the Nonregular Impedance Street Waveguide. IEEE Trans. on Anten. and Propagat., 1998, vol. 46, no. 12, pp. 1782–1789.

100. Blaunstein N., Katz D., Censor D., et al. Prediction of Loss Characteristics in Built-up Areas with Various Buildings’ Overlay Profiles. J. Anten. and Propagat. Magazine, 2002, vol. 44, no. 1, pp. 181–192.

101. Yarkoni N., Blaunstein N., and Katz D. Link Budget and Radio Coverage Design for Various Multipath Urban Communication Links. Radio Science, 2007, vol. 42, no. 2, pp. 412–427.

102. Katz D., Blaunstein N., Hayakawa M., and Kishiki Y. S. Radio Maps Design in Tokyo City based on Stochastic Multi-parametric and Deterministic Ray Tracing Approaches. J. Anten. and Propag. Magazine, 2009, vol. 51, no. 5, pp. 200–208.


Дополнительные файлы

Для цитирования: Сергеев А.М., Блаунштейн Н.Ш. ЭВОЛЮЦИЯ МНОГОПРОЦЕССОРНЫХ СИСТЕМ СВЯЗИ — СОТОВЫХ И НЕСОТОВЫХ — В ИСТОРИЧЕСКОЙ ПЕРСПЕКТИВЕ. ЧАСТЬ 2. Информационно-управляющие системы. 2018;(5):94-103. https://doi.org/10.31799/1684-8853-2018-5-94-103

For citation: Sergeev A.M., Blaunstein N.S. EVOLUTION OF CURRENT AND MODERN MULTIPLE-ACCESS NETWORKS IN HISTORICAL PERSPECTIVE: CELLULAR AND NON-CELLULAR. PART 2. Information and Control Systems. 2018;(5):94-103. https://doi.org/10.31799/1684-8853-2018-5-94-103

Просмотров: 49


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1684-8853 (Print)
ISSN 2541-8610 (Online)