Сегментация исходных снимков для фотометрического метода трехмерного сканирования


https://doi.org/10.15217/issn1684-8853.2015.3.29

Полный текст:


Аннотация

Постановка проблемы: прежде чем осуществлять вычисления градиента поверхности на основе ее снимков при различном положении источников света, необходимо исключить возможность ситуации, не соответствующей модели, используемой в методе вычисления. Наиболее эффективный путь, не требующий какой-либо предварительной обработки объекта, заключается в сегментации исходных снимков. Целью работы является определение и систематизация признаков затенений, бликов и переотражений; разработка алгоритма сегментации исходных снимков с учетом специфики фотометрического метода сканирования. Методы: экспериментальные данные получены при компьютерном моделировании исходных изображений с использованием модели отражения Фонга. Для сегментации изображений используются признаки бликов и затенений, основывающиеся на проверке линейной зависимости интенсивностей снимков, находящихся в одной плоскости, и минимизации функции отклонения исходных данных от данных, соответствующих используемой модели. Результаты: определена конфигурация фотометрического трехмерного сканера из пяти фиксированных источников света, позволяющая использовать дополнительные признаки при сегментации затенений, бликов и переотражений. За счет избыточного количества снимков гарантируется наличие как минимум трех измерений яркости в каждой точке объекта, удовлетворяющих условиям проверки. Разработан алгоритм для проверки соответствия исходных данных и модели отражения света поверхностью, используемой для вычисления, в котором для большинства видимых точек задача минимизации функции от двух переменных не требует решения или была сведена к задаче минимизации функции от одной переменной. Представлен результат сегментации для двух фигур, на одной из которых смоделированы затенения, блики и разрыв поверхности, которые часто являются трудностями для вычисления ориентации поверхности. Практическая значимость: в сравнении с аналогами разработанный алгоритм сокращает время, необходимое для сегментации всей видимой области, а также осуществляет более детальную сегментацию исходных снимков.

Об авторе

Виталий Александрович Кузнецов
Санкт-Петербургский государственный университет аэрокосмического приборостроения
Россия


Список литературы

1. Woodham R. J. Photometric Method for Determining Surface Orientation from Multiple Images // Optical Engineering. 1980. Vol. 19. N 1. P. 139-144.

2. Woodham R. J. Gradient and Curvature from the Photometric-Stereo Method, Including Local Confidence Estimation // Journal of Optical Society of America. Nov. 1994. Vol. 11. N 11. P. 3050-3068. doi:10.1364/JOSAA.11.003050

3. Hertzmann A., Seitz S. M. Example-Based Photometric Stereo: Shape Reconstruction with General Varying BDRFs // IEEE Transactions on Pattern Analysis and Machine Intelligence. Aug. 2005. Vol. 27. N 8. P. 1254-1264. doi:10.1109/ TPAMI.2009.102

4. Horn B. Height and Gradient from Shading // International Journal of Computer Vision. 1990. Vol. 5. N 1. P. 37-75.

5. Красильников Н. Н., Красильникова О. И. Исследование погрешностей определения координаты глубины при 3D-сканировании методом, основанным на диффузном отражении света // Информационно-управляющие системы. 2012. № 3(58). С. 2-8.

6. Красильников Н. Н. Метод получения 3D-изображений, основанный на диффузном отражении света сканируемыми объектами // Информационно-управляющие системы. 2009. № 6(43). С. 7-11.

7. Кузнецов В. А. Прогнозирование ошибки вычисления ориентации поверхности, обусловленной квантованием, для метода трехмерного сканирования, основанного на диффузном отражении света // Научная сессия ГУАП: сб. докл. В 3 ч. Ч. 1. Технические науки. СПб.: ГУАП, 2013. С. 89-91.

8. Solomon F., Ikeuchi K. Extracting the Shape and Roughness of Specular Lobe Objects Using Four Light Photometric Stereo // IEEE Transactions on Pattern Analysis and Machine Intelligence. Apr. 1996. Vol. 18. N 4. P. 449-454.

9. Barsky S., Petrou M. The 4-source Photometric Stereo Technique for Three-Dimensional Surfaces in the Presence of Highlights and Shadows // IEEE Transactions on Pattern Analysis and Machine Intelli gence. Oct. 2003. Vol. 25. N 10. P. 1239-1252. doi:10.1109/TPAMI.2003.1233898

10. Hernandez C., Vogiatzis G., Cipolla R. Overcoming Shadows in 3-source Photometric Stereo // IEEE Transactions on Pattern Analysis and Machine Intelligence. Feb. 2011. Vol. 33. N 2. P. 419-426.

11. Chandraker M., Agarwal S., Kriegman D. Shadowcuts: Photometric Stereo with Shadows //Proc. of IEEE Conf. on Computer Vision and Pattern Recognition. 2007. doi:10.1109/CVPR.2007.383288


Дополнительные файлы

Для цитирования: Кузнецов В.А. Сегментация исходных снимков для фотометрического метода трехмерного сканирования. Информационно-управляющие системы. 2015;(3):29-34. https://doi.org/10.15217/issn1684-8853.2015.3.29

For citation: Kuznetcov V.A. Image Segmentation Technique for Photometric Stereo. Information and Control Systems. 2015;(3):29-34. (In Russ.) https://doi.org/10.15217/issn1684-8853.2015.3.29

Просмотров: 27


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1684-8853 (Print)
ISSN 2541-8610 (Online)